Алгебраїчна тотожність Біанкі

Тензор Рімана задовольняє наступну тотожність:

яка називається алгебраїчною тотожністю Біанкі.

Варіанти запису алгебраїчної тотожності Біанкі

Оскільки тензор Рімана має дві антисиметричні пари індексів (тензор змінює знак на протилежний при перестановці двох індексів всередині кожної з пар), причому тензор симетричний при перестановці місцями самих пар, то ми можемо, наприклад поміняти місцями перші два індекса. Одержуємо (змінивши знак):

Якщо тепер поміняти місцями пари індексів, то матимемо:

Всі ці тотожності еквівалентні, і словами їх можна описати так: фіксуємо один з індексів тензора Рімана, а з трьох решти індексів утворююємо три циклічні перестановки. Сума компонент тензора Рімана з одержаними трьома наборами індексів дорівнює нулю.

Інші варіанти одержуються при підніманні одного чи декількох індексів, наприклад:

Підготовка доведення

Нехай ми маємо величину з трьома індексами яка симетрична по двох індексах (наприклад по двох перших індексах):

З неї ми можемо скласти іншу величину, яка буде антисиметрична по останніх двох індексах, за наступною формулою:

Тоді легко перевірити, що сума компонент при циклічних перестановках індексів дорівнює нулю:

Цей хід викладок не зміниться, якщо величина матиме більшу кількість індексів, які проте в перестановках не беруть участі.

Доведення виходячи із представлення через символи Крістофеля

Запишемо тензор Рімана через символи Крістофеля:

Якщо ми позначимо:

то

і рівність (4) збігається з алгебраїчною тотожністю Біанкі (1).

Доведення виходячи із представлення через вектори повної кривини

Запишемо тензор Рімана:

В цьому випадку

а далі все аналогічно попереднім викладкам.

Доведення через коваріантні похідні

Нехай и маємо довільне скалярне поле . Введемо наступні позначення для коваріантних похідних цього поля першого та другого порядку:

Зазначимо, що друга похідна є симетричним тензором внаслідок перестановочності частинних похідних та симетрії символів Крістофеля.

Тоді згортка тензора Рімана з градієнтом дорівнює:

В цьому випадку:

і ми одержуємо тотожність:

Оскільки функція довільна, ми можемо взяти її рівній одній з координат ( — фіксований індекс):

Підставляючи (15) в (14) одержуємо (з точністю до позначень індексів) алгебраїчну тотожність Біанкі (1).

Антисиметризація тензора Рімана

Використовуючи тензор тензор метричної матрьошки, можна для довільного тензора -рангу скласти наступний антисиметричний по всіх індексах тензор:

Очевидно, що антисиметричний тензор залишається незмінним після проведення процедури антисиметризації.

Застосуємо антисиметризацію до тензора Рімана:

При розкриванні визначника ми одержимо 24 доданка по перестановках індексів , причому парні перестановки будуть зі знаком «плюс», а непарні — зі знаком «мінус»:

Усього в формулі (18) буде вісім груп доданків по три доданки в кожній. Враховуючи симетрії тензора Рімана легко бачити, що всі ці вісім груп однакові (із врахуванням знаків). Тому одержуємо:

Тепер алгебраїчну тотожність Біанкі можна словами описати так: антисиметризація тензора Рімана дорівнює нулю.

Кількість лінійно незалежних компонент внутрішньої кривини

Якщо — розмірність многовида, то кількість комбінацій в антисиметричній парі індексів дорівнює:

Оскільки тензор Рімана симетричний щодо перестановки пар індексів, то його компоненти записуються (з точністю до знаку) через таку кількість різних чисел:

Але ці числа пов'язані лінійними залежностями, які слідують з алгебраїчної тотожності Біанкі. Кількість цих рівнянь, як легко бачити з формули (19), дорівнює кількості істотно різних компонент антисиметричного тензора четвертого рангу :

(зауважимо, що формула (22) дає правильний результат, тобто нуль, тоді коли )

Отже кількість лінійно незалежних компонент тензора Рімана дорівнює різниці:

Звичайно, формула (23) дає тільки максимально можливу кількість лінійно незалежних компонент тензора Рімана для даної розмірності многовида. А для конкретних многовидів ця кількість може бути меншою. Наприклад для плоского простору ця кількість дорівнює нулю, а для гіперповерхні в системі координат головних напрямків, маємо для індексів формулу:

а отже кількість лінійно незалежних компонент не перевищує кількості комбінацій з по 2, тобто:

Зв'язок з іншими властивостями внутрішньої кривини

Внаслідок алгебраїчної тотожності Біанкі, внутрішня кривина многовида повністю визначається за значеннями наступної квадратичної форми від бівекторів :

Також з алгебраїчною тотожністю Біанкі пов'язана можливість альтернативного погляду на внутрішню кривину через Симетричний тензор внутрішньої кривини

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.