Мішана похідна
Означення
Нехай дано достатньо гладку функцію багатьох змінних:
Ми можемо взяти частинну похідну цієї функції по одному з аргументів , вважаючи решту аргументів постійними параметрами. В результаті ми одержимо нову функцію:
Ця нова функція теж залежить від решти аргументів, як від параметрів. Тобто чисельне значення в загальному випадку залежить від усіх тих змінних , що і оригінальна функція :
Якщо функція виявиться досить гладкою, то ми можемо і її продиференціювати, взявши частинну похідну по тому самому, або по іншому аргументу :
Якщо , то вираз в правій частині рівності (4) називається мішаною похідною.
Теорема Шварца (рівність змішаних похідних)
Для достатньо гладкої функції багатьох змінних значення мішаної похідної не залежить від порядку диференціювання:
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.