Інтерметаліди

Інтерметалі́чні сполу́ки (інтерметале́ві сполуки, металі́ди, інтерметаліди) (рос. интерметаллиды, англ. intermetallic (compound), нім. Intermetalliden pl) — це хімічні сполуки між металами, які утворюються в результаті взаємодії компонентів при сплавлені, конденсації з пари, а також при реакціях у твердому стані внаслідок взаємної дифузії (при хіміко-термічній обробці), при розпаді пересиченого твердого розчину одного металу в іншому, в результаті інтенсивної пластичної деформації при механоактивації.

Cr11Ge19

Основні риси

Міжметалічна хімічна сполука двох або кількох металів, в якій атоми металів сполучені металічними зв'язками. У кристалічній ґратці металіду кожен метал створює свою підґратку, ніби вставлені одна в одну, і тому металід існує лише у певній області концентрацій компонентів, границі якої залежать від атомних радіусів, електронегативностей, потенціалів йонізації атомів металів. Склад таких сполук часто не відповідає формальній валентності компонентів, не завжди витримуються закони сталості складу й простих кратних співвідношень (напр., Ag5Sr). Структура їх визначається відношенням числа валентних електронів до числа атомів у елементарній комірці. Використовуються як магнітні матеріали, надпровідники, входять до складу жаростійких, високоміцних матеріалів.

Для інтерметалідів характерний переважно металічний тип хімічного зв'язку та специфічні металічні властивості. Однак серед них є також солеподібні сполуки з йоним зв'язком (Mg2Si, Mg2Ge), з проміжним — йоно-металічним (Ni2In) і ковалентно-металічним (NiAs), а також (рідше) з ковалентним зв'язком. Інтерметалічні сполуки відрізняються від сплавів упорядкованістю розташування атомів у кристалічній ґратці.

Розрізняють інтерметаліди постійного складу дальтоніди та змінного складу бертоліди.

Структура

Кристалічна структура інтерметалічних сполук залежить від геометричних та електронних факторів атомів і є стійкою в межах, що визначаються складом, температурою і тиском (області гомогенності). Серед інтерметалідів слід виділяти електронні сполуки (фази Юм-Розері), з щільно упакованими структурами (фази Лавеса, Франка-Каспера, Новотного), фази Зинтля (іонні сполуки). Головний та визначальний фактор в утворенні фаз Юм-Розері — це електронна концентрація n, яка дорівнює відношенню числа валентних електронів до числа атомів в кристалічній ґратці. Наприклад, фази системи Cu-Zn: CuZn (n=3/2), Cu5Zn3 (n=21/13), CuZn3 (n=7/4). Для фаз Лавеса визначальним є також розмірний або геометричний фактор rA/rB, який визначає щільність упаковки структури. Ці фази (MgCu2, MgZn2, MgNi2) виникають при взаємодії атомів, для яких відношення rA/rB є близьким до 1.22 (на практиці 1.1-1.4). Фази Зинтля (Zintl) є продуктом реакції між лужними, лужноземельними металами та елементами 13, 14, 15 або 16 груп. Наприклад, K8In11, Na2Tl, Na7Sn12, Ba3Si4, Sr11Cd6Sb12.

Інтерметаліди постійного (точкового) складу — надструктури (ZrNiAl, CeCo3B2, NdMo2Fe11, Mg6Cu16Si7). Тверді розчини та фази заміщення (Ag2-xAlx), віднімання (Ni1-xAl) та включення (гідриди, карбіди, нітриди).

Класифікація Пірсона основана на виявленні найхарактерніших щільних і плоских (або майже плоских) сіток і послідовностей їх укладання у структурах сполук. В основі систематики Крип'якевича лежать координаційні характеристики (поліедри) атомів меншого розміру.

Властивості

Фізичні та хімічні властивості інтерметалідів залежать більше від природи хімічного зв'язку, ніж від структури. Іонні інтерметаліди мають властивості, характерні для солей: високу температуру плавлення, занижену (у порівнянні з металічним типом) електропровідність, існування на діаграмах стану вузьких областей гомогенності. Для інтерметалідів із металічним типом зв'язку характерні властивості металів, наприклад, здатність до пластичної деформації. Все ж таки багато інтерметалідів характеризуються низькою пластичністю і надають крихкості сплавам.

Застосування

Магнітні матеріали — SmCo5, Fe3Ni, MnCu2Al, Nd2Fe14B.

Надпровідники — Nb3Sn, Nb3Ge, V3Si.

Напівпровідники — GaAs, CrSi2, Mg2Sn.

Акумулятори водню — LaNi5, CeMg12.

Меркуриди AuHg2, Au2Hg, Au3Hg застосовуються для вилучення золота.

Див. також

Джерела

Посилання

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.