Бочковий простір
Бочкою в топологічному векторному просторі називається підмножина, яка радіально опукла, закруглена і замкнута.
Локально опуклий простір називається бочковим, якщо будь-яка бочка в ньому є околом нуля або, що те ж саме, бочковий простір — це локально опуклий простір, в якому сімейство всіх бочок утворює базис (або на якому будь-яка переднорма напівнеперервна знизу, неперервна).
Будь-який берівський локально опуклий простір бочковий. Зокрема, всі банахові простори і всі простори Фреше бочкові.
Посилання
- Бочечное пространство. Математическая Энциклопедия. Т. 1 (А — Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] — М., «Советская Энциклопедия», 1977, 1152 стб. с илл.
- Robertson, A.P.; W.J. Robertson (1964). Topological vector spaces. Cambridge Tracts in Mathematics 53. Cambridge University Press. с. 65–75. (англ.)
- Schaefer, Helmuth H. (1971). Topological vector spaces. GTM 3. New York: Springer-Verlag. с. 60. ISBN 0-387-98726-6. (англ.)
- K. Floret, J. Wloka: Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Mathematics 56, 1968 (нім.)
- R. Meise, D. Vogt: Einführung in die Funktionalanalysis, Vieweg, 1992 ISBN 3-528-07262-8 (нім.)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.