Васильків Олег Орестович

Васильків Олег Орестович (1968 р. н., смт Перегінське, Рожнятівський район, Івано-Франківська область) - український вчений–матеріалознавець, доктор технічних наук (2006), лауреат державної премії України в галузі науки і техніки за 2015 рік.

Сфера наукових інтересів: наноструктурне матеріалознавство, кераміка, оксиди, карбіди, нітриди, бориди та їх композити, тугоплавка кераміка, високотемпературна міцність, зміцнення кераміки, інженерія оксидних та неоксидних нанодисперсних порошкових систем, іскроплазмове спікання (еlectric field assisted sintering technique (EFAST), spark plasma sintering (SPS)), спікання методом теплового пробою ("flash" sintering, "flash"-SPS), реакційний та нереакційний синтез та консолідація, нановибуховий синтез, інженерія багатокатіонних оксидних наносистем, нанореактори, карбіди, нітриди та бориди; легка масивна кераміка та її динамічні властивості.

З біографії

Закінчив Київський політехнічний ін-т (1994).

Аспірант ІПМ НАН України 1994-1997. Кандидат технічних наук (1997), доктор технічних наук (2006).

Від 1997 працював в Ін-ті проблем матеріалознавства НАН України (Київ): від 2006 – пров. науковий співробітник.

Водночас від 1999 – дослідник (STA-JSPS Fellow (post-doc)) Нац. ін-ту металів (NRIM) Японії, від 2001 дослідник Нац. ін-ту матеріалознавства (NIMS) Японії (Special Researcher- post-doc fellow of NIMS) , від 2004 дослідник міжнародного центру молодих вчених (ICYS international fellow), а від 2008 постійний співробітник Нац. ін-ту матеріалознавства (NIMS) Японії.

Станом на 2018 р. працює в Національний інститут матеріалознавства, Цукуба, Японія (National Institute for Materials Science, Japan). Провідний науковий співробітник[1]

Творчий доробок

Автор понад 500 публікацій включно з доповідями на конференціях. З них 110 публікацій ISІ.

Окремі публікації

  • D. Demirskyi, T.S. Suzuki, K. Yoshimi, O. Vasylkiv,  “Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders”, Open Ceramics, 2 July (2020).
  • O. Vasylkiv, D. Demirskyi, H. Borodianska, A. Kuncser, P. Badica, “High-temperature strength of boron carbide with Pt grain-boundary framework in situ synthesized during spark plasma sintering”, Ceramics International, 46 [7] May 9136-9144 (2020).
  • O. Vasylkiv, H. Borodianska, D. Demirskyi, P. Li, T.S. Suzuki, M.A. Grigoroscuta, I. Pasuk, A. Kuncser, P. Badica, "Bulks of Al-B-C obtained by reactively spark plasma sintering and impact properties by Split Hopkinson Pressure Bar", Scientific Report, (2019) 9:19484.
  • M.A. Grigoroscuta, V. Sandu, A. Kuncser, I. Pasuk, G. Aldica, T. Suzuki, O. Vasylkiv, P. Badica, “Superconducting MgB2 textured bulk obtained by ex-situ Spark Plasma Sintering from green compacts processed by slip casting under 12 T magnetic field”, Supercond. Sci. Technol. 32 [12] (2019) 125001 (11pp).
  • D. Demirskyi, I. Solodkyi, T. Nishimura, and O.O. Vasylkiv, “Fracture and property relationships in the double diboride ceramic composites by spark plasma sintering of TiB2 and NbB2”, J. Am. Ceram. Soc. 102 [7] Jul. 4259-4271 (2019), https://doi.org/10.1111/jace.16276.
  • D. Demirskyi, H. Borodianska, T.S. Suzuki, Y. Sakka, K. Yoshimi, and O. Vasylkiv, “High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC”, Scripta Mater., 164 Apr (2019) 12-16.
  • D. Demirskyi, T.S. Suzuki, S. Grasso, and O. Vasylkiv, “Microstructure and flexural strength of hafnium diboride via flash and conventional spark plasma sintering”, J. Euro. Ceram. Soc., 39 [4] Apr. 898-906 (2019), https://doi.org/10.1016/j.jeurceramsoc.2018.12.012
  • D. Demirskyi, I. Solodkyi, T. Nishimura, Y. Sakka and O. Vasylkiv, “High-temperature strength and plastic deformation behavior of bulk niobium diboride consolidated by spark plasma sintering”, J. Am. Ceram. Soc. 100 [11] Nov. 5295-5305 (2017).
  • D. Demirskyi, O. Vasylkiv, “Flexural strength behavior of a ZrB2–TaB2 composite consolidated by non-reactive spark plasma sintering at 2300 °C”,  Int. J. Refract. Met. & Hard Mater. 66 Aug. 31-35 (2017).
  • D. Demirskyi, O. Vasylkiv, “Spark plasma sintering and high-temperature strength of B6O–TaB2 ceramics”, J. Euro. Ceram. Soc. 37 [8] Jul. 3009–3014 (2017).
  • D. Demirskyi, O. Vasylkiv, “Analysis of high-temperature flexural strength behavior of B4C–TaB2 eutectic composites produced by in situ spark plasma sintering”, Mater. Sci. & Eng. A. 697 14 Jun. 71-78 (2017).
  • O. Bezdorozhev, T. Kolodiazhnyi, O. Vasylkiv, “Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures”, J. Magn. Magn. Mater. 428 [15] Apr. 406-411 (2017).
  • D. Demirskyi, H. Borodianska, Y. Sakka, O. Vasylkiv, “Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering”, J. Euro. Ceram. Soc., 37 [1] Jan. 393-397 (2017).
  • D. Demirskyi, O. Vasylkiv, “Mechanical properties of SiC–NbB2 eutectic composites by in situ spark plasma sintering”, Ceramics International, 42 [16] 19372-19385 (2016).
  • D. Demirskyi, I. Solodkyi, Y. Sakka, O. Vasylkiv, “High-temperature strength of boron suboxide ceramic consolidated by spark plasma sintering”, J. Am. Ceram. Soc., 99 [8] 2769-2777 (2016).
  • O. Vasylkiv, H. Borodianska, Y. Sakka, D. Demirskyi, “Flash spark plasma sintering of ultrafine yttria-stabilized zirconia ceramics”, Scripta Mater., 121 [8] 32-36 (2016).
  • O. Vasylkiv, O. Bezdorozhev, Y. Sakka, “Synthesis of iron oxide nanoparticles with different morphologies by precipitation method with and without chitosan addition”, J. Ceram. Soc. Japan, 124 [4] 489-494 (2016).
  • O. Vasylkiv, D. Demirskyi, P. Badica, T. Nishimura, A. I. Y. Tok, Y. Sakka, H. Borodianska, “Room and high temperature flexural failure of spark plasma sintered boron carbide”, Ceramics International, 42 7001-7013 (2016)
  • I. Solodkyi, D. Demirskyi, Y. Sakka, O. Vasylkiv, “Hardness and toughness control of brittle boron suboxide ceramics by consolidation of star-shaped particles by spark plasma sintering”, Ceramics International, 42 3525-3530 (2016).
  • D. Demirskyi, T. Nishimura, Y. Sakka, O. Vasylkiv, “High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation”, Ceramics International, 42 1298-1306 (2016).
  • I. Solodkyi, D. Demirskyi, Y. Sakka, O. Vasylkiv, “Synthesis of Multi-Layered Star-Shaped B6O Particles Using the Seed-mediated Growth Method”, J. Am. Ceram. Soc. 98 [12] 3635-3638 (2015).
  • D. Demirskyi, Y. Sakka, O. Vasylkiv, “Consolidation of B4C-TaB2 eutectic composites by spark plasma sintering”, Journal of Asian Ceramic Societies, 3 [4] Dec. 369-372 (2015).
  • D. Demirskyi, Y. Sakka, O. Vasylkiv, “Consolidation of B4C–VB2 eutectic ceramics by spark plasma sintering”, J. Ceram. Soc. Jap., 123 [11] 1051-1054 (2015).
  • D. Demirskyi, Y. Sakka, O. Vasylkiv, “High-Temperature Reactive Spark Plasma Consolidation of TiB2–NbC Ceramic Composites”,  Ceramics International, 41 [9] 10828-10834 (2015).
  • S. S. Xie, H. Chen, I. Solodkyi, O. Vasylkiv, A. I.Y. Tok,"Cyclic Formation of Boron Suboxide Crystallites into Star-Shaped Nanoplates", Scripta Materialia, 99 [4] 69-72 (2015).
  • P. Badica, G. V. Aldica, M. Burdusel, H. Borodianska, Y. Sakka, and O. Vasylkiv, Challenges of nanostructuring and functional properties for selected bulk materials obtained by reactive spark plasma sintering. J. Journal. .Appl. Phys. 53 [5] 05FB22 (2014).
  • I. Solodkyi, H. Borodianska, T. Zhao, TY. Sakka, P. Badica, and O. Vasylkiv, B6O ceramic by in-situ reactive spark plasma sintering of B2O3 and B powder mixture”, J. Ceram. Soc. Japan, 122 [4] (2014).
  • Bogomol, H. Borodianska, T. Zhao, T. Nishimura, Y. Sakka, P. Loboda and O. Vasylkiv, “A dense and tough (B4C-TiB2)-B4C ‘composite within a composite’ by spark plasma sintering”, Scripta Materialia, 71 [1] 17–20 (2014).
  • P. Badica, H. Borodianska, X. Shumao, T. Zhao, D. Demirskyi, P. Li, A. I. Y. Tok, Y. Sakka, and O. Vasylkiv, “Toughness Control of Boron Carbide Obtained by Spark Plasma Sintering in Nitrogen Atmosphere”, Ceramics International, 40 [2] 3053-3061 (2014).
  • I. Solodkyi, S. S. Xie, T. Zhao, H. Borodianska, Y. Sakka and O. Vasylkiv, “Synthesis of B6O powder and spark plasma sintering of B6O and B6O-B4C ceramics”, J. Ceram. Soc. Japan, 121 [11] 950-955 (2013).
  • I. Bogomol, P. Badica, Y. Shen, T. Nishimura, P. Loboda, O. Vasylkiv, “Room and high temperature toughening in directionally solidified B4C–TiB2 eutectic composites by Si doping”, J. Alloys Compounds, 570 [9] 94-99 (2013).
  • O. Vasylkiv, H. Borodianska, P. Badica, S. Grasso, Y. Sakka, A. Tok, L. Su, M. Bosman, and J. Ma, “High Hardness BaCb-(BxOy/BN) Composites with 3D Mesh-Like Fine Grain-Boundary Structure by Reactive Spark Plasma Sintering”, J. Nanosci. Nanotechnol., 12  959-965 (2012).
  • H. Borodianska, D. Demirskyi, Y. Sakka, P. Badica and O. Vasylkiv, Grain boundary diffusion driven spark plasma sintering of nanocrystalline zirconia”, Ceramics Internation, 38  4385-4389 (2012).
  • D. Demirskyi, H. Borodianska, S. Grasso, Y. Sakka, O. Vasylkiv, “Microstructure evolution during field-assisted sintering of zirconia spheres”, Scripta Materialia, 65 683–686 (2011)
  • P. Badica, A. Crisan, G. Aldica, K. Endo, H. Borodianska, K. Togano, S. Awaji, K. Watanabe, Y. Sakka and O. Vasylkiv, TOPICAL REVIEW ‘Beautiful’ unconventional synthesis and processing technologies of superconductors and some other materials”,  Sci. Technol. Adv. Mater., 12 013001 (2011)
  • L. T. Su, S. Xie, J. Guo, A. I. Y. Tok, and O. Vasylkiv, “A Novel Non-Catalytic Synthesis Method for Zero- and Two-Dimensional B13C2 Nanostructures”, CrystEngComm., 13  1299-1303 (2011).
  • Grasso, C. Hu, O. Vasylkiv, T. S. Suzuki, S. Guo, T. Nishimura, Y. Sakka, “High-hardness B4C textured by strong magnetic field technique”, Scripta Mater., 64  256-259 (2011).
  • S. Grasso, Y. Sakka, N. Rendtorff, C. Hu, Giovanni Maizza, H. Borodianska and O. Vasylkiv, “Modeling of the temperature distribution of flash sintered Zirconia”, J. Ceram. Soc. Japan, 119 [2] 144-146 (2011).
  • H. Borodianska, T. Ludvinskaya, Y. Sakka, I. Uvarova, O. Vasylkiv, “Bulk Ti1-xAlxN nano-composite via spark plasma sintering of nanostructured Ti1-xAlxN-AlN powders”, Scripta Mater., 61 1020-1023 (2009).
  • Vasylkiv O., Sakka Y., Skorokhod V.V. “Nano-Explosion Synthesis of Multi-Component Ceramic Nano-Composites”. J. Euro. Ceram. Soc. 27 [2-3] 585-592 (2007).
  • Vasylkiv O., Sakka Y., Skorokhod V.V. “Nano-Blast Synthesis of Nanosize CeO2-Gd2O3 Powders”. J. Amer. Ceram. Soc. 89 [6] 1822-1826 (2006).
  • Vasylkiv O. & Sakka Y., “Nanoexplosion Synthesis of Multimetal Oxide Ceramic Nanopowders”. Nano Letters. 5 [12] 2598-2604 (2005).
  • Vasylkiv O., Sakka Y., Maeda Y., Skorokhod V.V., “Sonochemical preparation and properties of Pt-3Y-TZP nano-composites”. J. Amer. Ceram. Soc.. 88 [3] 639-644 (2005).
  • Vasylkiv O., Kolodiazhnyi T., Sakka Y., Skorokhod V.V. “Synthesis and characterization of nanosize ceria-gadolinia powders”. J. Ceram. Soc. Japan 113 [1] 101-106 (2005).
  • Vasylkiv O., Sakka Y., Maeda Y., Skorokhod V.V. “Sonochemical preparation of zirconia/noble metals composite nanopowders”. J. Ceram. Soc. Japan 112 [5] 965-968 (2004).
  • Vasylkiv O., Sakka Y., Maeda Y., Skorokhod V.V. “Nano-engineering of zirconia-noble metals composites”. J. Euro. Ceram. Soc. 24 [2] 469-473 (2004).
  • Vasylkiv O., Sakka Y., and Skorokhod V. V. “Hardness and Fracture Toughness of Alumina-Doped Tetragonal Zirconia with Different Yttria Contents”. Materials Transactions JIM. 44, [10] 2235-2238 (2003).
  • Vasylkiv O., Sakka Y., and Skorokhod V. V. “Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nano-ceramics”. J. Amer. Ceram. Soc. 86 [2] 299-304 (2003).
  • Vasylkiv O. and Sakka Y. “Synthesis and Colloidal Processing of Zirconia Nano-Powder”. J. Am. Ceram. Soc. 84 [11] 2489-2494 (2001)
  • Vasylkiv O., Sakka Y. and Borodians’ka H. “Nonisothermal synthesis of yttria stabilized zirconia nano-powder through oxalate processing. II. Morphology manipulation”. J. Am. Ceram. Soc. 84 [11] 2484-2488 (2001).
  • Vasylkiv O. and Sakka Y. “Hydroxide synthesis, colloidal processing and sintering of nano-size 3Y-TZP powder”. Scripta Materialia, 44 2219-2223 (2001).
  • Vasylkiv O. and Sakka Y. “Nonisothermal synthesis of yttria stabilized zirconia nano-powder through oxalate processing. I. Peculiarities of (Y-Zr) oxalate synthesis and its decomposition”. J. Amer. Ceram. Soc. 83 [9] 2196-2202 (2000).

Примітки

Джерела

  • Васильків Олег Орестович
  • https://samurai.nims.go.jp/profiles/oleg_vasylkiv?locale=en
  • https://orcid.org/0000-0002-5041-6130
  • http://www.researcherid.com/rid/H-2722-2011
  • https://www.scopus.com/authid/detail.uri?authorId=6701645305
  • https://www.mendeley.com/profiles/oleg-vasylkiv/
  • https://scholar.google.co.jp/citations?user=FdTKmeQAAAAJ&hl=en
  • https://www.researchgate.net/profile/Oleg_Vasylkiv2

Література

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.