Китайська дзиґа
Китайська дзиґа, дзиґа Томсона, Тіп-топ — дзиґа, яка має властивість перевертатися у процесі обертання.
Порівняння з дзиґою
Звичайна дзиґа після розкручування (у будь-яку сторону) має наступні властивості:
- в процесі обертання точка доторкання до поверхні в дзиґи, не змінюється
- висота центра тяжіння дзиґи у процесі обертання, лишається сталою
На перший погляд здається, що ці властивості можна спостерігати у всіх дзиґ (не маючи внутрішнього джерела енергії). Проте, завдяки спеціальній формі і розподілу маси по тілу дзиґи можучи виникнути ускладнене обертання: через декотрий час після початку обертання з положення ніжкою горілиць, дзиґа переходить у стадію обертання на ніжці горизонтально, а відповідно, стрибками перевертається на ніжку з піднятям центра тяжіння і починає обертатися, торкаючись площі вершечком ніжки з збереженням направлення обертання. Варто зазначити, що позначка моменту імпульсу впродовж процесу обертання не змінюється. Такі дзиґи називаються китайською дзиґою або дзиґою Томсона.
Фізика явища
Основна ідея полягає у появі моменту сили тертя, і відповідно гіроскопічній прецесії, котра у підсумку обертають дзиґу (через незвичну форму дзиґи) і зрештою дзиґа встає на ніжку.[1][2][3].
У відомий публікаціях вважається, що швидкість точки контакту з поверхнею, по котрій проходить рух, дорівнює нулю.[3][4] П. Контенсу вказав, що така постановка задачі не дає правильної фізичної картини руху дзиґи. У. Ф. Журавльов і Д. М. Климов ввели у точці контакту сили сухого тертя і повністю пояснили цей незвичний рух китайського дзиґи.[5]
Історія
Вперше на незвичайні динамічні властивості китайських дзиґ звернув увагу лорд Кельвін[6]. У 1891 році на одну з форм китайської дзиґи під назвою «wendekreisel» був виданий німецький патент №63261. Однак, у патенті були вказані неправильні параметри дзиґи — якщо точно по ньому робити, він не буде перевертатися (мабуть, для запобігання копіювання конкурентами). У 1950 році дзиґу знову відкрив данський інженер Werner Ostberg, котрий теж отримав на нього патент.[7][8] Відтоді дзиґи отримали у світі велику популярність.
Див. також
Примітки
- Перри Дж. Вращающийся волчок, Одесса, Mathesis, 1912. — 127с. с.46.
- Сайт «Научная Сеть». Механика твердого тела. Лекции. nature.web.ru
- К. Магнус. Гироскоп. Теория и применение. М., 1974. (о сферическом волчке со смещённым центром тяжести)
- П. Контенсу. Связь между трением скольжения и трением верчения и её учёт в теории волчка. // Проблемы гироскопии. М.: Мир, 1967. С. 60-77.
- В. Ф. Журавлев, Д. М. Климов. О динамике волчка Томсона (тип-топ) на плоскости с реальным сухим трением. // Изв. МТТ. 2005. № 6. С. 157—168.
- J. Perry: «Spinning Tops», Society for promoting Christian knowledge (1890, есть русский перевод 1935) — история дискуссий Кельвина с коллегами по этому вопросу
- Патент 1891 года. (PDF-документ. Загрузка 105 Кбайт) fysikbasen.dk(нім.)
- Патент 1995 года. v3.espacenet.com(англ.)
Література
- Сивухин Д. В. Загальний курс фізики = Общий курс физики. — Издание 3-е, исправленное и дополненное. — М. : Наука, 1989. — Т. I. Механика. — 576 с.
- Перри Дж. Вращающийся волчок. МА.; Л.: Гл. ред. науч.-попул. і юнош. лит., 1935. 92 з.
- Кривошлыков С. А. Механика вращающегося волчка // Квант. — 1971. — № 10 (3 листопада). — С. 21—25.
Посилання
- Опис з ілюстраціями. igrudom.ru
- Glad, S. Torkel; Daniel Petersson; and Stefan Rauch-Wojciechowski. Phase Space of Rolling Solutions of the Tippe Top // Symmetry, Integrability and Geometry: Methods and Applications (SIGMA). — 2007. — Т. 3 (3 November).(англ.)
- У. А. Алешкевич, Л. Г. Деденко, У. А. Короваїв «Лекції по механіку твердого тіла», З-у МГУ, 1997. astronet.ru
- Stefan Ebenfeld, Florian Scheck «A new analysis of the tippe top: Asymptotic states and Liapunov stability». arxiv.org (.)
- Опис з ілюстраціями. fysikbasen.dk (.)
- Опис з ілюстраціями. me598.wikidot.com (.)
- Видео. (Формат MOV. Завантаження 1,8 Мбайт) fysikbasen.dk