Пробки і відклади газових гідратів

Пробки і відклади газових гідратів (рос. пробки и отложения газовых гидратов; англ. gas hydrate blocks and deposits, нім. Stopfen m pl und Ablagerungen f pl der Gashydrate) — щільні утворення (накопичення) газових гідратів (в основному гідрату метану) на робочій поверхні трубопроводів у свердловині, системі збирання і транспортування газу.

Утворення гідратів у свердловинах

Рис. 1. — Зміна температури по стовбуру свердловини Дебіт (тис. м3/доб); 1 ‒ 700; 2 ‒ 500; 3 ‒ 300; 4 ‒ 100; 5 ‒ 10; 6 ‒ геотермічний коефіцієнт; 7 ‒ 9 ‒ рівноважні температури утворення гідратів відповідно на другий, шостий і дев'ятий рік розробки. Рис. 2. — Зміна тиску і температури газу, рівноважної температури утворення гідратів залежно від дебіту свердловини 1 ‒ тиск на гирлі свердловини; 2 ‒ температура на гирлі; 3 ‒ температура утворення гідратів; 4 ‒ зона безгідратної експлуатації. Рис. 3. — Графік визначення місця утворення гідратів у свердловинах Дебіт (тис. м3/доб); 1 ‒ 20; 2 ‒ 30; криві: 3 ‒ геотермічного градієнта; 4 ‒ рівноважної температури утворення гідратів

У ряді випадків між вибоєм і гирлом свердловини виникають умови (склад, вологість, тиск, температура тощо), сприятливі для утворення гідратів. У більшості ж випадків температура газу на вибої свердловини при русі газу вгору може стати нижчою температури гідратоутворення. В результаті свердловина забивається гідратами.

Зміну температури газу вздовж стовбура і на гирлі свердловини можна визначити за допомогою глибинних термометрів або розрахунковим шляхом за вище наведеними залежностями.

Аналіз факторів, що впливають на зміну температури по стовбуру свердловин, показує, що тепловий режим в процесі її експлуатації змінюється залежно від дебіту: зі збільшенням дебіту температура газового потоку по стовбуру підвищується (рис. 1). Таким чином, при регулюванні дебіту можна змінювати температуру утворення гідратів. Це добре видно з рисунка 2. Тиск на гирлі р, температура газу на гирлі Т і рівноважна температура утворення гідратів змінюються залежно від дебіту свердловини. Для умов, що розглядаються режим безгідратної експлуатації забезпечується при дебіті від 1 млн до 7 млн м3/добу. Оптимальний дебіт, що забезпечує максимальний запас температури, становить приблизно 3 млн м3/добу.

Температура утворення гідратів в стовбурі свердловини при заданій витраті залежить також від діаметра колони: режим безгідратної експлуатації зсувається в бік більших оптимальних дебітів зі збільшенням діаметра.

Вплив зміни діаметра фонтанних труб і витрати газу на температуру гідратоутворення необхідно враховувати при виборі режиму роботи свердловин. Слід відзначити, що існує такий дебіт, при якому температура газу на гирлі максимальна і подальше підвищення дебіту призводить до зниження температури. В даному випадку створюються умови, сприятливі для утворення гідратів. Пояснюється це тим, що при дуже великій витраті газу втрати тиску збільшуються настільки, що зниження температури за рахунок ефекту Джоуля-Томсона починає переважати над підвищенням її за рахунок високих швидкостей газу в свердловині.

Місце випадання гідратів у свердловинах залежить від багатьох факторів. Визначають його по точках перетину рівноважних кривих утворення гідратів і зміни температур по стовбуру свердловин (рис. 3.). Утворення гідратів у стовбурі свердловини можна помітити по зниженню робочого тиску на гирлі свердловини і зменшенню дебіту газу.

Ліквідація відкладів газових гідратів

Ліквідація відкладів газових гідратів в обв'язці свердловини та промислових трубопроводах здійснюється шляхом:

  • інтенсивного зовнішнього нагрівання місць утворення гідратів або подавання гарячого агента безпосередньо на гідратну пробку;
  • розкладення гідратів шляхом введення великої порції антигідратного інгібітору;
  • руйнування гідратної пробки шляхом різкого одностороннього зниження тиску (продування газу в атмосферу);
  • розкладення гідратів зниженням тиску з обох сторін гідратної пробки з наступним продуванням газу в атмосферу;
  • зупинки подавання газу на конкретний період часу, достатній для розкладання гідратів теплом довколишньої породи, з наступним продуванням в атмосферу.

Якщо перепад тиску в штуцері викликає гідратоутворення, то це явище має бути попереджено одним із методів:

  • шляхом обігрівання гарячою рідиною вузла встановлення штуцера і викидної лінії від штуцера до кінця ділянки, яка охолоджується в результаті перепаду тиску в штуцері;
  • застосуванням багатоступінчастих штуцерів;
  • подаванням антигідратних інгібіторів у викидну лінію безпосередньо перед місцем встановлення штуцера. Подавання інгібітору повинно відбуватися із посудини високого тиску, розрахунковий робочий тиск якої повинен бути вищим максимального тиску у свердловині.

Ліквідація гідратних пробок (корків) методом зниження тиску полягає в порушенні рівноважного стану гідратів, через що відбувається їх розкладання. Тиск знижують трьома способами: відключають ділянку газопроводу, де утворилася пробка, і з двох сторін через продувні свічки випускають газ в атмосферу; перекривають лінійний кран з одного боку і випускають в атмосферу газ, що міститься між пробкою і одним із перекритих кранів; відключають ділянку газопроводу з обох боків пробки і випускають в атмосферу газ, що міститься між пробкою і одним із перекритих кранів. Найкращі результати одержують в першому випадку, хоч і за великих втрат газу. В другому і третьому випадках одностороннє зниження тиску може призвести до аварії. Після розкладання гідратів свердловину продувають, але при цьому часто не враховуються можливості накопичення рідинних вуглеводнів на продувній ділянці і утворення повторних гідратоводяних пробок за рахунок різкого зниження температури.

В тих випадках, коли тиск у газопроводі помітно перевищує тиск гідратоутворення, пропонується для попередження процесу гідратоутворення метод дроселювання, який полягає в наступному: на трасі газопроводу, в точці, де температура газу знижується до 1—3 °C, встановлюється газовий сепаратор для вловлювання крапельної рідини. Після її відділення тиск газу знижують на 0,1—0,2 МПа, в результаті чого точка роси газу (по воді) знижується, так як вологовміст газу при нижчому тиску і тій же температурі (3 °C) значно вищий. Зниження точки роси газу при зниженні тиску тільки на 0,1 МПа становить бл. 5 °C. Отже, метод редуціювання для попередження гідратоутворення в ряді випадків виявляється ефективним і дає змогу відмовитися від інших методів, які вимагають значних витрат праці і засобів.

Ліквідація гідратних пробок (корків) у трубопроводах природних і стиснутих газів методом підігрівання полягає в підвищенні температури вище рівноважної температури утворення гідратів, що призводить до розкладання газогідратів. На практиці трубопровід підігрівають гарячою водою або парою. Принципово новим методом боротьби з утворенням гідратів у трубопроводах є застосування електромагнітних хвиль надвисокочастотного (НВЧ) діапазону. За наявності гідратів у газопроводі його діелектричне заповнення, з точки зору електродинаміки, буде неоднорідним. Викликавши в газопроводі електромагнітну хвилю з умовою λ < λкр (λ — робоча довжина хвилі, λкр — критична довжина хвилі в круглому хвилеводі заданого діаметра), одержимо її згасні розповсюдження, причому основне згасання хвилі буде спостерігатися в конденсованих фазах — гідратах і воді. Поглинена енергія електромагнітної хвилі буде розсіюватися у вигляді тепла і нагрівати в першу чергу саме гідрати і воду — речовини зі значними діелектричними втратами.

Розроблено також новий, комбінований спосіб розкладання гідратів шляхом теплоакустичного діяння. Руйнування гідратного шару проводилося спільним впливом випромінювального акустичного перетворювача (ВАП) і теплоелектричного нагрівача. Встановлено, що зі збільшенням потужності, яка подається на ВАП, руйнування відкладених гідратів проходить інтенсивніше.

Див. також

Література

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.