Частотницьке висновування

Часто́тницьке висно́вування (англ. frequentist inference) — це один з типів статистичного висновування, який робить висновки з даних вибірки з акцентом на частоту, або пропорцію даних. Альтернативною назвою є часто́тницька стати́стика (англ. frequentist statistics). Це є система висновування, на якій ґрунтуються загальновизнані методики перевірки статистичних гіпотез, та довірчих проміжків. Окрім частотницького висновування, головним альтернативним підходом є баєсове висновування, а іншим фідуційне висновування.

Хоча іноді й вважають, що «баєсове висновування» включає підхід до висновування, що веде до оптимальних рішень, тут для спрощення розглядається вужче бачення.

Основи

Частотницьке висновування було пов'язано з частотницькою інтерпретацією ймовірності, а саме, що будь-який даний експеримент можливо розглядати як одне з нескінченної послідовності можливих повторень такого ж самого експерименту, кожне з яких видаватиме статистично незалежні результати.[1] З цієї точки зору підхід частотницького висновування до здійснення висновків з даних фактично вимагає, щоби з цього уявного набору повторень правильний висновок могло би бути зроблено із заданою (високою) ймовірністю. Тим не менше, точно такі ж процедури може бути розроблено в рамках трошки іншого формулювання. Такого, в якому береться до уваги доекспериментальна точка зору. Можливо обґрунтувати, що план експерименту повинен включати, до початку власне експерименту, рішення про те, які саме кроки буде здійснено для досягнення висновку з даних, що ще буде отримано. Ці кроки може бути визначено науковцем так, щоби існувала велика ймовірність досягнення правильного рішення, де, у цьому випадку, ймовірність ставиться у відповідність до набору випадкових подій, що ще мають трапитися, і отже не залежить від частотницької інтерпретації ймовірності. Це міркування обговорювалося Нейманом,[2] поміж інших.

Аналогічно, баєсове висновування часто розглядали як майже рівнозначне баєсової інтерпретації ймовірності, й отже головна відмінність між частотницьким та баєсовим висновуванням є такою ж, як і відмінність між цими двома інтерпретаціями того, що означає «ймовірність». Проте, там, де це доречно, баєсове висновування (у цьому разі мається на увазі застосування теореми Баєса) використовують і ті, хто застосовує частотницьку інтерпретацію ймовірності.

Існує дві важливі відмінності в частотницькому та баєсовому підходах до висновування, що не включено до наведеного вище розгляду інтерпретації ймовірності:

  • В частотницькому підході до висновування невідомі параметри часто, але не завжди, розглядають як такі, що мають фіксовані, але не відомі значення, що неможливо інтерпретувати як випадкові змінні в жодному сенсі, й отже з ними жодним чином не може бути пов'язано ймовірності. На противагу, баєсів підхід до висновування дозволяє пов'язувати ймовірності з невідомими параметрами, й ці ймовірності іноді можуть мати як частотницьку, так і баєсову інтерпретацію. Баєсів підхід дозволяє цим імовірностям мати таку інтерпретацію, що представляє переконання науковця в істинності заданих значень параметру (див Баєсова ймовірність § Особисті ймовірності та об'єктивні методи побудови апріорних).
  • Хоча обидва підходи до висновування й використовують «імовірності», ці ймовірності пов'язано з різними типами речей. Результатом баєсового підходу може бути розподіл імовірності того, що відомо про параметри з результатів експерименту або дослідження. Результатом частотницького підходу є або висновок «істина або хиба» з перевірки значущості, або висновок такого вигляду, що даний отриманий з вибірки довірчий проміжок покриває істинне значення: кожен з цих висновків має задану ймовірність того, що він є правильним, яка має або частотницьку інтерпретацію, або доекспериментальну.

Див. також

Примітки

  1. Everitt, B.S. (2002) The Cambridge Dictionary of Statistics, CUP ISBN 0-521-81099-X (англ.)
  2. Neyman, J. (1937) «Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability», Philosophical Transactions of the Royal Society of London A, 236, 333—380. (англ.)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.