Локальна теорема Муавра — Лапласа
Локальна теорема Муавра — Лапласа описує наближення нормального розподілу до біноміального розподілу. Є окремим випадком центральної граничної теореми.
Теорема
Якщо , тоді для k в -околі точки np, існує наближення[1]
Гранична форма теореми стверджує, що
для
Додаток
Можливо, формулювання стає ясним не відразу, проте практичний зміст теореми простий: при великих значеннях n імовірність спостерігаючи рівно m успіхів можна приблизно розраховувати за формулою:
Якщо вас цікавить імовірність того, що число успіхів буде лежати в деяких межах - - у розрахунках допомагає інтегральна теорема Муавра-Лапласа.
Посилання
- Papoulis, Pillai, «Probability, Random Variables, and Stochastic Processes», 4th Edition
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.