Метод Гауса — Жордана
Метод Гауса — Жордана використовується для розв'язання систем лінійних алгебраїчних рівнянь, знаходження оберненої матриці, знаходження координат вектора у заданому базисі, відшукання рангу матриці. Метод є модифікацією методу Гауса. Названий на честь Гауса та німецького математика та геодезиста Вільгельма Йордана.
Алгоритм
- Обирається перша зліва колонка, що містить хоч одне ненульове значення.
- Якщо верхнє число у цій колонці - нуль, то обмінюється увесь перший рядок матриці з іншим рядком матриці, де у цій колонці нема нуля.
- Усі елементи першого рядка діляться на верхній елемент обраної колонки.
- Від рядків, що залишились, віднімається перший рядок, помножений на перший елемент відповідного рядка, з метою отримання нуля в першому елементі кожного рядка (крім першого).
- Далі, повторюємо ці операції із матрицею, отриманою з початкової матриці після викреслювання першого рядка та першого стовпчика.
- Після повторення операцій n-1 разів отримаємо верхню трикутну матрицю.
- Віднімаємо від передостаннього рядка останній рядок, помножений на відповідний коефіцієнт, щоб у передостанньому рядку залишилась лише 1 на головній діагоналі.
- Повторюємо попередній крок для наступних рядків. У результаті отримуємо одиничну матрицю і рішення на місці вільного вектора (над ним необхідно виконувати ті самі перетворення).
Розгорнутий алгоритм для знаходження оберненої матриці
Нехай дано:
Прямий хід (алгоритм утворення нулів під головною діагоналлю)
- Поділимо перший рядок матриці А на отримаємо: , j – стовпець матриці А.
- Повторюємо дії для матриці I , за формулою: , s – стовпець матриці I
Отримаємо:
- Будемо утворювати 0 у першому стовбці : .
- Повторюємо дії для матриці І, за формулами :
Отримаємо:
- Продовжуємо виконувати аналогічні операції використовуючи формули :
при умові, що
- Повторюємо дії для матриці І, за формулами :
при умові, що
Отримаємо :
Зворотній хід (алгоритм утворення нулів над головною діагоналлю)
Використаємо формулу: , при умові, що
Повторюємо дії для матриці І, за формулою : , при умові, що
Остаточно отримуємо :
Приклад
Розв'яжемо систему рівнянь:
Запишемо її у вигляді матриці 3×4, де останній стовпчик є вільним членом:
Виконаємо такі дії:
- До рядка 2 додамо: -4 * рядок 1.
- До рядка 3 додамо: -9 * рядок 1.
Отримаємо:
- До рядка 3 додамо: -3 * рядок 2.
- Рядок 2 ділимо на -2
- До рядка 1 додамо: -1 * рядок 3.
- До рядка 2 додамо: -3/2 * рядок 3.
- До рядка 1 додамо: -1 * рядок 2.
У правому стовпчику отримаємо рішення:
- .
Джерела
- Гельфанд И. М. Лекции по линейной алгебре. — 5-е. — Москва : Наука, 1998. — 320 с. — ISBN 5791300158.(рос.)
- Мальцев А. И. Основы линейной алгебры. — 3-е изд. — Новосибирск : Наука, 1970. — 400 с.(рос.)
Посилання
- Lipschutz, Seymour, and Lipson, Mark. "Schaum's Outlines: Linear Algebra". Tata McGraw-hill edition. Delhi 2001. pp. 69-80.
- Algorithm for Gauss-Jordan elimination in Matlab
- Algorithm for Gauss-Jordan elimination in Python
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.