Стан NOON
Стан NOON — квантово-механічний заплутаний стан багатьох тіл:
що представляє суперпозицію частинок N в режимі a з нульовими частинками в режимі b, і навпаки. Зазвичай частинки складають фотони, але в принципі будь-яке бозонне поле може підтримувати стан NOON.
Історія та термінологія
Стани NOON були вперше введені Barry C. Sanders в контексті вивчення квантової декогеренції станів кота Шредінгера.[1] Вони були незалежно відкриті в 2000 році групою Джонатана Даулінга в JPL, яка представила їх як основу для концепції квантової літографії.[2] Термін «стан NOON» вперше з'явився у друці як виноска у статті з квантової метрології, опублікованій Лі, Коком та Даулінгом,[3] де це було написано N00N, з нулями замість літер «O».
Застосування
Стани NOON є важливим поняттям у квантовій метрології та квантовому зондуванні за здатність з їх допомогою проводити точні вимірювання фази при використанні в оптичному інтерферометрі. Наприклад, розглянемо спостережуване
Очікуване значення для системи в стані NOON перемикається між +1 і −1, коли фаза змінюється з 0 на . Більш того, похибка вимірювання фази стає
Це так звана межа Гейзенберга дає квадратичне покращення порівняно з стандартною квантовою межею. Стани NOON тісно пов'язані із котом Шредінгера та станами Грінбергера–Горна–Цайлінґера і надзвичайно крихкими.
Експериментальні реалізації
Було кілька теоретичних пропозицій щодо створення фотонних станів NOON. Кок, Лі та Даулінг запропонували перший загальний метод, заснований на методі постселекції фотодетекції.[4] Недоліком цього методу було його експоненціальне масштабування ймовірності успіху протоколу. Прайд і Уайт[5] згодом запровадили спрощений метод з використанням симетричних багатопортових дільників променя, однофотонних входів, та або передбачених або умовних вимірювань. Їхній метод, наприклад, дозволяє виконувати оголошене створення стану NOON з N = 4 без необхідності постселекції або нульового виявлення фотонів і має таку ж ймовірність успіху 3/64, як і більш складна схема Кока та ін. Кейбл і Даулінг запропонували метод, який має поліноміальне масштабування з імовірністю успіху, який тому можна назвати ефективним.[6]
Двофотонний стан NOON, де N = 2, може бути створений детерміновано з двох однакових фотонів і дільника променя 50:50. Це називається ефект Хонга–Оу–Мендела в квантовій оптиці. Три- і чотирифотонні стани NOON неможливо створити детерміновано з однофотонних станів, але вони були створені імовірнісним шляхом постселекції за допомогою спонтанного параметричного перетворення.[7][8] Інший підхід, що включає інтерференцію некласичного світла, створеного спонтанним параметричним перетворенням, і класичного лазерного променя на дільнику променя 50:50, був використаний І. Афеком, О. Амбаром та Ю. Сільберберг, щоб експериментально продемонструвати створення стану NOON до N = 5.[9][10]
Супер-роздільна здатність раніше використовувалась як показник створення стану NOON. У 2005 році, Resch з іншими[11] показали, що його можна однаково добре підготувати за допомогою класичної інтерферометрії. Вони показали, що лише фазова надчутливість є однозначним показником стану NOON; крім того, вони запровадили критерії для визначення, чи було це досягнуто на основі спостережуваної видимості та ефективності. Фазова надчутливість стану NOON з N = 2 була продемонстрована[12] і супер-роздільна здатність, але не суперчутливість, оскільки ефективність була занадто низькою, станів NOON до N = 4 фотонів також була продемонстрована експериментально.[13]
Примітки
- Sanders, Barry C. (1989). Quantum dynamics of the nonlinear rotator and the effects of continual spin measurement. Physical Review A 40 (5): 2417–2427. Bibcode:1989PhRvA..40.2417S. ISSN 0556-2791. PMID 9902422. doi:10.1103/PhysRevA.40.2417.
- Boto, Agedi N.; Kok, Pieter; Abrams, Daniel S.; Braunstein, Samuel L.; Williams, Colin P.; Dowling, Jonathan P. (2000). Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit. Physical Review Letters 85 (13): 2733–2736. Bibcode:2000PhRvL..85.2733B. ISSN 0031-9007. PMID 10991220. arXiv:quant-ph/9912052. doi:10.1103/PhysRevLett.85.2733. Проігноровано невідомий параметр
|s2cid=
(довідка) - Lee, Hwang; Kok, Pieter; Dowling, Jonathan P. (2002). A quantum Rosetta stone for interferometry. Journal of Modern Optics 49 (14–15): 2325–2338. Bibcode:2002JMOp...49.2325L. ISSN 0950-0340. arXiv:quant-ph/0202133. doi:10.1080/0950034021000011536. Проігноровано невідомий параметр
|s2cid=
(довідка) - Kok, Pieter; Lee, Hwang; Dowling, Jonathan P. (2002). Creation of large-photon-number path entanglement conditioned on photodetection. Physical Review A 65 (5): 052104. Bibcode:2002PhRvA..65e2104K. ISSN 1050-2947. arXiv:quant-ph/0112002. doi:10.1103/PhysRevA.65.052104. Проігноровано невідомий параметр
|s2cid=
(довідка) - Pryde, G. J.; White, A. G. (2003). Creation of maximally entangled photon-number states using optical fiber multiports. Physical Review A 68 (5): 052315. Bibcode:2003PhRvA..68e2315P. ISSN 1050-2947. arXiv:quant-ph/0304135. doi:10.1103/PhysRevA.68.052315. Проігноровано невідомий параметр
|s2cid=
(довідка) - Cable, Hugo; Dowling, Jonathan P. (2007). Efficient Generation of Large Number-Path Entanglement Using Only Linear Optics and Feed-Forward. Physical Review Letters 99 (16): 163604. Bibcode:2007PhRvL..99p3604C. ISSN 0031-9007. PMID 17995252. arXiv:0704.0678. doi:10.1103/PhysRevLett.99.163604. Проігноровано невідомий параметр
|s2cid=
(довідка) - Walther, Philip; Pan, Jian-Wei; Aspelmeyer, Markus; Ursin, Rupert; Gasparoni, Sara; Zeilinger, Anton (2004). De Broglie wavelength of a non-local four-photon state. Nature 429 (6988): 158–161. Bibcode:2004Natur.429..158W. ISSN 0028-0836. PMID 15141205. arXiv:quant-ph/0312197. doi:10.1038/nature02552. Проігноровано невідомий параметр
|s2cid=
(довідка) - Mitchell, M. W.; Lundeen, J. S.; Steinberg, A. M. (2004). Super-resolving phase measurements with a multiphoton entangled state. Nature 429 (6988): 161–164. Bibcode:2004Natur.429..161M. ISSN 0028-0836. PMID 15141206. arXiv:quant-ph/0312186. doi:10.1038/nature02493. Проігноровано невідомий параметр
|s2cid=
(довідка) - Afek, I.; Ambar, O.; Silberberg, Y. (2010). High-NOON States by Mixing Quantum and Classical Light. Science 328 (5980): 879–881. Bibcode:2010Sci...328..879A. ISSN 0036-8075. PMID 20466927. doi:10.1126/science.1188172. Проігноровано невідомий параметр
|s2cid=
(довідка) - Israel, Y.; Afek, I.; Rosen, S.; Ambar, O.; Silberberg, Y. (2012). Experimental tomography of NOON states with large photon numbers. Physical Review A 85 (2): 022115. Bibcode:2012PhRvA..85b2115I. ISSN 1050-2947. arXiv:1112.4371. doi:10.1103/PhysRevA.85.022115.
- Resch, K. J.; Pregnell, K. L.; Prevedel, R.; Gilchrist, A.; Pryde, G. J.; O’Brien, J. L.; White, A. G. (2007). Time-Reversal and Super-Resolving Phase Measurements. Physical Review Letters 98 (22): 223601. Bibcode:2007PhRvL..98v3601R. ISSN 0031-9007. PMID 17677842. arXiv:quant-ph/0511214. doi:10.1103/PhysRevLett.98.223601. Проігноровано невідомий параметр
|s2cid=
(довідка) - Slussarenko, Sergei; Weston, Morgan M.; Chrzanowski, Helen M.; Shalm, Lynden K.; Verma, Varun B.; Nam, Sae Woo; Pryde, Geoff J. (2017). Unconditional violation of the shot-noise limit in photonic quantum metrology. Nature Photonics 11 (11): 700–703. Bibcode:2017NaPho..11..700S. ISSN 1749-4885. arXiv:1707.08977. doi:10.1038/s41566-017-0011-5. Проігноровано невідомий параметр
|hdl-access=
(довідка); Проігноровано невідомий параметр|hdl=
(довідка); Проігноровано невідомий параметр|s2cid=
(довідка) - Nagata, T.; Okamoto, R.; O'Brien, J. L.; Sasaki, K.; Takeuchi, S. (2007). Beating the Standard Quantum Limit with Four-Entangled Photons. Science 316 (5825): 726–729. Bibcode:2007Sci...316..726N. ISSN 0036-8075. PMID 17478715. arXiv:0708.1385. doi:10.1126/science.1138007. Проігноровано невідомий параметр
|s2cid=
(довідка)