Сферичні гармоніки
Сфери́чні гармо́ніки — набір ортонормованих функцій двох кутових змінних і , які складають повний базис функцій сферичного кута.
Сферичні гармоніки позначаються , де l = 0,1,2…, а m пробігає значення від -l до l.
- ,
де - приєднані поліноми Лежандра.
Сферичні гармоніки є власними функціями оператора кутового моменту.
Множник в означенні сферичних гармонік вибирається з умови нормування
- ,
де інтегрування проводиться по повному сферичному куту, а - символ Кронекера.
Деякі сферичні гармоніки з малими l
Посилання
- Розрахунок коефіцієнтів сферичної гармоніки з кубічної текстури — Переглянуто: 15 жовтня 2014
- Розрахунок освітлення з допомогою сферичних гармонік в OpenGL — Переглянуто: 15 жовтня 2014
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.