Теорема Брамагупти

Теоре́ма Брамагу́пти (англ. Brahmagupta's Theorem) теорема елементарної геометрії про одну з властивостей вписаного у коло чотирикутника, доведена у сьомому столітті нашої ери індійським математиком Брамагуптою і носить його ім'я[1].

Формулювання теореми

Основне формулювання теореми[2]:

Якщо вписаний у коло чотирикутник має взаємно перпендикулярні діагоналі, які перетинаються у точці , то пряма, що проходить через точку і є перпендикулярною до однієї з його сторін, ділить протилежну до неї сторону навпіл.

Примітка По аналогії із серединним перпендикуляром (медіатрисою) до сторони трикутника відрізок FE на рисунку праворуч називають антимедіатрисою протилежних сторін чотирикутника. З урахуванням цієї примітки теорема Брамагупти може бути сформульована у вигляді:

Якщо вписаний у коло чотирикутник має перпендикулярні діагоналі, що перетинаються у точці , то дві пари його антимедіатрис проходять через точку .

Доведення теореми

На рисунку зображено вписаний чотирикутник , що має перпендикулярні діагоналі і , а прямаі є перпендикулярною до сторони й перетинає сторону у точці . Тоді

Отже, трикутник є рівнобедреним.

Аналогічно, рівнобедреним буде і трикутник . Тому .

Див. також

Примітки

  1. Coxeter, H. S. M.; Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., p. 59, 1967
  2. Michael John Bradley The Birth of Mathematics: Ancient Times to 1300. — Publisher Infobase Publishing, 2006. — P 70, 85. — ISBN 0816054231

Джерела

Посилання

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.