Формула Брамагупти

Фо́рмула Брамагу́пти (англ. Brahmagupta's formula) — математична формула, яка виражає площу вписаного у коло чотирикутника як функцію довжин його сторін.

Якщо вписаний у коло чотирикутник має довжини сторін і півпериметр , то його площа виражається формулою:


Варіації й узагальнення

  • Формула Брамагупти узагальнює формулу Герона для визначення площі трикутника на випадок вписаного у коло чотирикутника: достатньо вважати, що довжина однієї із сторін дорівнює нулю (наприклад, ) і формула Брамагупти зводиться до формули Герона.
  • На випадок довільних чотирикутників формула Брамагупти може бути узагальнена так:
де  — півсума протилежних кутів чотирикутника. Яку саме пару протилежних кутів взяти, ролі не відіграє, так як якщо півсума однієї пари протилежних кутів дорівнює , то півсума двох інших кутів буде , і .

Інколи цю загальнішу формулу записують так:

,
де и  — довжини діагоналей чотирикутника.
  • Математик Девід П. Роббінс (англ. David P. Robbins) довів[1], що для довільного вписаного многокутника з сторонами величина є коренем деякого многочлена , коефіцієнти якого у свою чергу є многочленами від довжин сторін. Він знайшов ці многочлени для та . Іншими авторами встановлено[2], що многочлен можна обрати так, щоб його старший коефіцієнт дорівнював одиниці, а степінь дорівнював , при і , якщо . Тут
де  біноміальні коефіцієнти. Для многокутників з невеликим числом сторін маємо , , , (послідовність A000531 з Онлайн енциклопедії послідовностей цілих чисел, OEIS) і , , , (послідовність A107373 з Онлайн енциклопедії послідовностей цілих чисел, OEIS).
  • Якщо у формулі Брамагупти виразити півпериметр через півсуму усіх сторін даного чотирикутника, піднести обидві частини до квадрату, помножити на -16, розкрити дужки та звести подібні, то вона набуде вигляду:
  • Права частина рівняння буде збігатись з розкладом визначника, поданого нижче, якщо його помножити на -1. Тому можна написати, що[3]

Див. також

Примітки

  1. D. P. Robbins Areas of polygons inscribed in a circle. // Discrete & Computational Geometry — 12, 1994 — P. 223—236.
  2. Maley, F. Miller; Robbins, David P.; Roskies, Julie (2005). On the areas of cyclic and semicyclic polygons. Advances in Applied Mathematics 34 (4): 669–689. doi:10.1016/j.aam.2004.09.008.
  3. Стариков В. Н. Заметки по геометрии // Научный поиск: гуманитарные и социально-экономические науки: сборник научных трудов. Выпуск 1/ Гл. ред. Романова И.В. Чебоксары: ЦДИП «INet», 2014. С. 37-39

Джерела

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.