Внутрішня метрика
Внутрішня метрика — метрика простору, що визначається за допомогою функціоналу довжини, як інфімум довжин усіх шляхів (кривих), що з'єднують дану пару точок.
Означення
Нехай задано топологічний простір і обраний клас деяких допустимих шляхів , що міститься в множині всіх неперервних шляхів в .
- На просторі заданий функціонал довжини, якщо на множині задана функція , що ставить у відповідність кожному значення (невід'ємне число або нескінченність), яке називається довжиною шляху .
- Метрика на просторі називається внутрішньою, якщо для будь-яких двох точок відстань між ними визначається формулою , де інфімум береться по всіх допустимих шляхах, що з'єднують точки .
Пов'язані означення
- Нехай — дві довільні точки метричного простору і — довільне додатнє число. Точка називається їх -серединою, якщо
- Метричний простір називається геодезичним, якщо будь-які дві точки можна з'єднати найкоротшою.
Властивості
- Якщо — простір з внутрішньої метрикою, то для будь-яких двох точок і будь-якого існує їх -середина. У випадку, коли метричний простір повний, має місце і зворотне твердження: якщо для будь-яких двох точок і будь-якого існує їх -середина, то ця метрика внутрішня.
- Повний метричний простір з внутрішньої метрикою має наступну властивість: для будь-яких двох точок і знайдеться крива довжини що з'єднує точки і . Крім того, в повному метричному просторі з внутрішньої метрикою довжина найкоротшої збігається з відстанню між її кінцями.
- Теорема Хопфа — Рінова: Якщо — локально компактний повний метричний простір з внутрішньої метрикою, то будь-які дві точки можна з'єднати найкоротшою. Більш того, простір є обмежено компактним (тобто всі обмежені замкнуті підмножини є компактними).
Література
- Бураго Д. Ю., Бураго Ю. Д., Иванов С. В., Курс метрической геометрии. — Москва-Ижевск, Институт компьютерных исследований, 2004. ISBN 5-93972-300-4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.