Орієнтований граф

Орієнтований граф (коротко орграф) — (мульти) граф, ребрам якого присвоєно напрямок. Орієнтовані ребра називаються також дугами, а в деяких джерелах (Оре) і просто ребрами.

Орієнтований граф з трьома дугами і трьома вершинами.

Основні поняття

Формально, орграф D = (V, E) є множина E впорядкованих пар вершин .

Дуга {u, v} інцидентна до вершин u і v. При цьому говорять, що u початкова вершина дуги, а v кінцева вершина.

Орграф, отриманий з простого графу орієнтацією ребер, називається орієнтованим. На відміну від останнього, у довільного простого орграфу дві вершини можуть з'єднуватися двома різноорієнтованими дугами.

Орієнтований повний граф називається турніром.

Зв'язність

Маршрутом орграфу називають послідовність вершин і дуг, виду (вершини можуть повторюватися). Довжина маршруту — кількість дуг у ньому.

Шлях маршрут орграфу без повторюваних дуг, простий шлях — без повторюваних вершин. Якщо існує шлях з однієї вершини в іншу, то друга вершина досяжна з першої.

Контур — замкнений шлях.

Для напівмаршруту знімається обмеження на напрямок дуг, аналогічно визначаються напівшлях і напівконтур.

Орграф сильно зв'язний, або просто сильний, якщо всі його вершини взаємно досяжні; Односторонньо зв'язний, або просто односторонній якщо для будь-яких двох вершин, принаймні одна досяжна з іншою; Слабо зв'язний, або просто слабкий, якщо при ігноруванні напрямів дуг виходить зв'язний (мульти)граф;

Максимальний сильний підграф називається сильною компонентою; одностороння компонента і слабка компонента визначаються аналогічно .

Конденсацією орграфу D називають орграф D*, вершинами якого служать сильні компоненти D, а дуга в D* показує наявність хоча б однієї дуги між вершинами, що входять у відповідні компоненти.

Додаткові визначення

Орієнтований ациклічний граф або «гамак» є безконтурним орграфом.

Орієнтований граф, що отриманий із заданого зміною напрямку ребер на протилежні, називається зворотним.

Зображення і властивості всіх орграфів з трьома вузлами

Легенда: С — слабкий, ОС — односторонній, СС — сильний, Н — орієнтований граф, Г — гамак, Т — турніром.

0 дуг1 дуга2 дуги3 дуги4 дуги5 дуг6 дуг
порожній, Н, Г
Н, Г
ОС
CC
CC
повний, CC
ОС, Н, Г
CC, Н, Т
CC
C, Н, Г
ОС, Н, Г, Т
ОС
C, Н, Г
ОС
ОС

Застосування орграфів

Орграф широко застосовуються в програмуванні як спосіб опису систем зі складними зв'язками. Наприклад, одна з основних структур, що використовуються при розробці компіляторів і взагалі для подання комп'ютерних програм — граф потоків даних.

Бінарні відношення

Орграф відношення подільності

Бінарне відношення над скінченним носієм може бути представлене у вигляді орграфу. Простим орграфом можна представити антирефлексивні відношення, в загальному випадку потрібен орграф з петлями. Якщо відношення симетричне, то його можна представити неорієнтованим графом, а якщо антисиметричне, то орієнтованим графом.

Примітки

    Література

    • Харари Ф. Теория графов — М.: УРСС, 2003. — 300 с. — ISBN 5-354-00301-6.
    • Оре, Ойстин Теория графов — М.: УРСС, 2008. — 352 с. — ISBN 978-5-397-00044-4.
    • Альфред В. Ахо, Моника С. Лам, Рави Сети, Джеффри Д. Ульман Компиляторы: принципы, технологии и инструменты, 2 издание = Compilers: Principles, Techniques, and Tools — 2 изд. — М.: «Вильямс», 2008. — ISBN 978-5-8459-1349-4.

    Див. також

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.