Повна категорія

Категорія называється повною у малому, якщо у ній будь-яка (мала) діаграма має границю. Дуальне поняття — коповна у малому категорія, тобто та, у якій будь-яка мала діаграма має кограницю. Аналогічно визначається кінцева повнота і взагалі α-повнота для будь-якого регулярного кардинала α. З них усіх найбільш використовуваною є повнота у малому, тому категорії, повні у малому, називаються просто повними. Відзначимо, що це не означає існування границь взагалі усіх (не обов'язково малих) діаграм, бо така категорія з необхідністю була б передпорядком.

Категорія, яка є одночасно повною і коповною, називається біповною.

Приклади

  • Наступні категорії біповні:
    • категорія множин ;
    • категорія груп ;
    • категорія кілець ;
    • категорія абелевих груп ;
    • категорія топологічних просторів ;
    • категорія компактних хаусдорфових просторів ;
    • категорія малих категорій ;
  • Наступні категорії скінченно біповні, але не є повними або коповними:
    • категорія скінченних множин ;
    • категорія скінченновимірних векторних просторів над полем ;
    • категорія скінченних груп ;
  • Взагалі, якщо — категорія моделей деякої алгебраїчної теорії , то повна і коповна, так як вона рефлективна у . Нагадаємо, що алгебраїчна теорія допускає лише умову на операції, які є тотожностями (жодних кванторів!). Скажімо, категорія полів не є категорією моделей алгебраїчної теорії, тому попереднє твердження до неї незастосовне. Вона не є повною або коповною.
  • (теорема про границю з параметром) Якщо категорія повна (коповна), то категорія повна (коповна) для будь-якої категорії , при чому границі обраховуються поточково.
  • Передпорядок повний, якщо у ньому існує найбільший елемент і будь-яка множина елементів має точну верхню грань. Аналогічно, він коповний, якщо має найменьший елемент і будь-яка множина елементів має точну нижню грань.
  • Категорія метричних просторів скінченно повна, але не є повною і не має навіть скінченних кодобутків.

Властивості

  • Якщо у категорії існує термінальний об'єкт, будь-яка пара паралельних морфізмів має урівнювач і для будь-яких двох об'єктів існує добуток, то категорія є скінченно повною. Якщо крім того інсують усі малі добутки об'єктів, то категорія повна у малому.
  • Дуально, якщо у категорії існує початковий об'єкт, для будь-яких двох паралельних морфізмів існує коурівнювач та існує [кодобуток]] усіх пар об'єктів, то категорія є скінченно коповною.
  • (Фрейд) Якщо мала категорія повна у малому, то вона є передпорядком.
  • Якщо категорія повна у малому, то для будь-якої малої категорії будь-який функтор має праве розширення Кана за будь-яким функтором , при чому будь-яке таке розширення Кана є поточковим. Твердження явно випливає з подання поточкового розширення Кана як границі.

Література

  • С. Маклейн Категории для работающего математика, — [[{{{1}}} (станція метро)|{{{1}}}]]: ФИЗМАТЛИТ, 2004. — 352 с — ISBN 5-9221-0400-4.
  • Р. Голдблатт Топосы. Категорный анализ логики, — [[{{{1}}} (станція метро)|{{{1}}}]]: Мир, 1983. — 487 с.
  • F. Borceux. {{{Заголовок}}}. — Т. 1. — 345 p. — ISBN 0 521 44178 1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.