Трикутна хвиля

Трикутна хвиля — це несинусоїдальна форма хвилі, названа на честь своєї трикутної форми. Це періодична, кусково-лінійна, неперервна, дійснозначна функція.

Обмежена трикутна хвиля: залежність від часу (вгорі) та частоти (внизу). Основна частота дорівнює 220 Гц (A3)

Як і прямокутна хвиля, трикутна хвиля містить тільки непарні гармоніки. Однак вищі гармоніки скочуються набагато швидше ніж в прямокутної хвилі (пропорційно оберненому квадрату номера гармоніки, а не оберненому значенню).

Гармоніки

Анімація адитивним синтезом трикутної хвилі зі збільшенням кількості гармонік. Див. Фур'є-аналіз для математичного опису.

Можна апроксимувати трикутну хвилю адитивним синтезом, підсумовуючи непарні гармоніки основної частоти, домножуючи кожну іншу непарну гармоніку на (або, еквівалентно, змінюючи її фазу на π) і домножуючи амплітуду гармонік на обернений квадрат їх номера моди (або на обернений квадрат їх відносної частоти до фундаментальної).

Вищесказане можна математично узагальнити наступним чином:

,

де — кількість гармонік, що включаються в наближення, — незалежна змінна (наприклад, час для звукових хвиль), — основна частота, а — індекс гармоніки, яка пов'язана з номером її моди, .

Цей нескінченний ряд Фур'є сходиться до трикутної хвилі, коли прямує до нескінченності як показано на анімації.

Означення

Ще одне означення трикутної хвилі на інтервалі від до та з періодом :

,

де символ функція підлоги від .

Також трикутна хвиля може бути абсолютним значенням пилкоподібної хвилі :

або для інтервалу від до :

Трикутна хвиля також може бути виражена як інтеграл

.

Це просте рівняння з періодом та початковим значенням :

.

Оскільки у цьому представлені використовується лише функція модулята абсолютне значення, то це можна використовувати для простої реалізації трикутної хвилі на апаратній електроніці з малою потужністю процесора. Попереднє рівняння можна узагальнити на випадок періоду , амплітуди і початкового значення :

Попередня функція - це частковий випадок останньої при і :

Непарну версію першої функції можна отримати, просто змістити на одиницю початкове значення, що змінить фазу вихідної функції:

Узагальнюючи це, одержуємо непарну функцію для будь-якого періоду і амплітуди:

За допомогою функцій sine та arcsine з періодом та амплітудою трикутну хвилю можна записати у вигляді:

Довжина дуги

Довжина дуги за період для трикутної хвилі заданої амплітуди та періодом :

Дивись також

Посилання

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.