Закон Ампера для циркуляції магнітного поля
Закон Ампера для циркуляції магнітного поля — твердження про те, що інтеграл по замкненому контуру від магнітної індукції пропорційний силі електричному струму, що протікає через площу, обмежену контуром. Закон сформулював у 1826 році Андре-Марі Ампер. У модифікованому вигляді він входить до основних рівнянь електродинаміки.
Наслідком закону Ампера є те, що струми, які протікають за межами контуру, не дають внеску в циркуляцію.
Формулювання
Інтегральна форма
У системі одиниць СГС закон Ампера має вигляд: ,
де — магнітна індукція, — густина струму, - швидкість світла.
У ISQ :
- ,
де — магнітна стала.
Закон справедливий для постійних струмів і полів. У разі змінних струмів в формулі з'являється член, пов'язаний із струмом зміщення.
Диференціальна форма
В диференціальній формі закон Ампера набирає вигляду (СГС):
або (СІ)
Модифікація з врахуванням змінного електричного поля
Змінне електричне поле є додатковим джерелом, що породжує магнітне поле. З його врахуванням закон Ампера змінює форму. Для вакууму він набирає вигляду (СГС):
- ,
де — напруженість електричного поля. Величину
де - вектор електричної індукції, називають струмом зміщення. Для вакууму .
У середовищі
Закон Ампера для циркуляції магнітного поля можна використовувати також і для середовища, однак при цьому потрібно враховувати всі струми, які виникають у середовищі. Це не тільки струми вільних зарядів, а струми зарядів, зв'язаних в складі атомів і молекул. Такі струми виникають з двох причин. По-перше, зв'язані електрони в магнітному полі прецесують, створюючи струм намаганіченння, по-друге, у випадку змінного електричного поля, електрони зміщуються відносно йонів, з якими вони зв'язані, створюючи струм поляризації. Враховуючи всі ці струми закон Ампера для середовища, записують в такій формі, щоб у ньому залишилися тільки струми вільних заряджених частинок:
- ,
де - напруженість магнітного поля, — струм вільних зарядів. При цьому внесок струмів намагнічування входить у визначення , а внесок струмів поляризації — у визначення .
У диференційній формі закон Ампера набирає вигляду (СГС):
Джерела
- Сивухин Д.В. (1977). Общий курс физики. т III. Электричество. Москва: Наука.