Критерій абсолютної стійкості В.М.Попова
Критерій абсолютної стійкості В. М. Попова — для встановлення абсолютної стійкості нелінійної системи досить підібрати таку пряму на комплексній площині W*(jω), що проходить через точку (1/k, j0), щоб вся крива W*(jω) лежала праворуч від цієї прямої — тобто щоб пряма проведена через точку (1/k, j0) не перетинала годограф амплідудно-фазової частотної характеристики (АФЧХ). Умови виконання теореми показані на рис.
Якщо таку пряму провести не можна, то це означає, що абсолютна стійкість для даної системи неможлива. Обрис нелінійності може бути невідомим. Критерій доцільно застосовувати у випадках, коли нелінійність може в процесі роботи САУ змінюватися, або її математичний опис невідомо.
Див. також
Література
- Іванов А. О. Теорія автоматичного керування: Підручник. — Дніпропетровськ: Національний гірничий університет. — 2003. — 250 с.
- Енциклопедія кібернетики. тт. 1, 2. — К.: Головна редакція УРЕ, 1973. — 584 с.
Посилання
- Основи теорії автоматичного регулювання[недоступне посилання з липня 2019]
- Курс лекцій з автоматики
- Критерій Попова
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.