Множина рівня

Множиною рівня функції , означеної на називається множина виду .

Множина рівня функцій, що володіють фрактальними властивостями може бути одноточковою, зліченною або континуальною.

Приклад

Розглянемо 2-вимірну евклідову відстань:

Множнина рівня цієї функцій складається з точок, що лежать на відстані від початку координат, тобто коло. Наприклад, , бо . Геометрично це означає, що точка приналежить колу радіуса 5 з центром в початку координат. Загальніше, сфера в метричному просторі з радіусом із центром у можна означити через множину рівня .

Множини рівнів і градієнт

Розгляньмо функцію f чий графік виглядає як пагорб. Сині криві це множини рівня; червоні криві слідують напрямку градієнта. Обачний ходок обирає синю стежку; відважний ходок простує червоною стежкою. Зверніть увагу, що сині і червоні стежки завжди перетинаються під прямим кутом.
Теорема: Якщо функція f диференційовна, тоді в кожній точці градієнт f або рівний нулю, або перпендикулярний множині рівня f у цій точці.

Щоб збагнути, що це означає уявіть, що два скелелази в одній точці на горі. Один із них зухвалий і обирає напрямок найкрутішого схилу. Інший натомість поміркований; він не бажає ані дертись угору, ані спускатись донизу і обирає шлях уздовж якого він буде на тій самій висоті. Наша теорема стверджує, що ці скелелази розійдуться під прямим кутом.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.