Мітохондрія

Мітохондрія (від грец. μιτος або mitos — «нитка» та κουδριον або khondrion — «гранула») — двомембранна органела, наявна у більшості клітин еукаріот[1]. Мітохондрії іноді називають «клітинними електростанціями», тому що вони перетворюють молекули поживних речовин на енергію у формі АТФ через процес відомий як окисне фосфорилювання. Типова еукаріотична клітина містить близько 2 тис. мітохондрій, які займають приблизно одну п'яту її повного об'єму[джерело?]. Мітохондрії містять так звану мітохондріальну ДНК, незалежну від ДНК, розташованої у ядрі клітини. Відповідно до загальноприйнятої ендосимбіотичної теорії, мітохондрії походять від клітин прокаріотів, родичів сучасних протеобактерій, які було захоплено іншими клітинами.

Електронна мікрофотографія мітохондрії, що показує мітохондріальну матрицю і мембрани

Структура мітохондрії

Схематичне зображення структури мітохондрії

Мітохондрія оточена внутрішньою і зовнішньою мембранами, складеними з подвійного шару фосфоліпідів і білків. Ці дві мембрани схожі, проте, мають різні властивості. Зовнішня мембрана товщиною 7 нм гладенька, вона не утворює ніяких складок і виростів. Внутрішня мембрана утворює численні складки, спрямовані в порожнину мітохондрії, товщиною 7 нм. Через цю двомембранну організацію мітохондрія фізично розділена на 5 відділів. Це зовнішня мембрана, міжмембранний простір (простір між зовнішньою і внутрішньою мембранами, 10 нм), внутрішня мембрана, кристи (сформовані складками внутрішньої мембрани) і матрикс (простір в межах внутрішньої мембрани). Мітохондрія має розміри від 1 до 10 мікрон (μм).

Зовнішня мембрана

Зовнішня мітохондріальна мембрана, що оточує всю органелу, має співвідношення фосфоліпідів до білків подібне до плазматичної мембрани еукаріот (близько 1:1 за вагою). Вона містить численні інтегральні білки порини, які мають відносно великий внутрішній канал (близько 2-3 нм), що пропускає всі молекули від 5000 Да та менше[2]. Більші молекули можуть перетнути зовнішню мембрану тільки за допомогою активного транспорту. Зовнішня мембрана також містить ферменти, залучений в такі різноманітні активності як подовження жирних кислот, окиснення адреналіну і біодеградація триптофану.

Міжмембранний простір

Міжмембранний простір — це простір між зовнішньою та внутрішньою мембраною мітохондрії. Його товщина становить близько 10-20 нм. Оскільки зовнішня мембрана мітохондрії проникна для невеликих молекул та іонів, їх концентрація в периплазматичному просторі мало відрізняється від їхньої концентрації в цитоплазмі. Для транспортування великих білків, навпаки, необхідні специфічні сигнальні пептиди; тому білкові компоненти периплазматичного простору та цитоплазми відрізняються. Одним із білків, що містяться у периплазматичному просторі, є цитохром c — один з компонентів дихального ланцюга мітохондрій.

Внутрішня мембрана

Зображення крист в мітохондрії печінки пацюка

Внутрішня мітохондріальна мембрана містить білки з чотирма видами функцій[2]:

  1. Білки, що проводять окиснювальні реакції респіраторного ланцюжка.
  2. АТФ-синтаза, яка виробляє в матриці АТФ.
  3. Специфічні транспортні білки, які регулюють проходження метаболітів між матрицею і цитополазмою.
  4. Системи імпорту білків.

Внутрішня мембрана містить більше 100 різних поліпептидів і має дуже високе співвідношення фосфоліпідів до білків (більше, ніж 3:1 за вагою, тобто, приблизно 1 білок на 15 молекул фосфоліпідів). Додатково, внутрішня мембрана багата на фосфоліпід кардіоліпін, який є зазвичай характеристикою бактерійних плазматичних мембран. На відміну від зовнішньої мембрани, внутрішня мембрана не містить поринів і тому практично непроникна; майже всі іони і молекули потребують спеціальних мембранних транспортних білків для потрапляння із міжмембранного до матриксу чи назад. Крім того, через внутрішню мембрану підтримується мембранний потенціал.

Внутрішня мембрана має численні складки — кристи —, які збільшують поверхню внутрішньої мембрани та її здатність виробляти АТФ. У типової мітохондрії печінки, наприклад, площа внутрішньої мембрани, зокрема, крист, приблизно вп'ятеро перевищує площу зовнішньої мембрани. Мітохондрії клітин, які мають вищі потреби в АТФ, наприклад, м'язових клітин, містять більше крист, ніж типова мітохондрія печінки.

Мітохондріальний матрикс

Матрикс — простір, обмежений внутрішньою мембраною. Матрикс містить надзвичайно сконцентровану суміш сотень ферментів, на додаток до спеціальних мітохондріальних рибосом, тРНК і декількох копій мітохондріальної ДНК. Головні функції ферментів включають окиснення пірувата і жирних кислот, та цикл трикарбонових кислот[2].

Мітохондрії мають свій власний генетичний матеріал і системи для виробництва власної РНК і білків (Див. синтез білків). Ця нехромосомна ДНК кодує нечисленні мітохондріальні пептиди (13 у людини), що використовуються у внутрішній мітохондріальній мембрані разом з білками що кодуються генами клітинного ядра.

Функції мітохондрій

Перелік функцій

Хоча добре відомо, що мітохондрії перетворюють органічні речовини на клітинне «паливо» у формі АТФ, мітохондрії також грають важливу роль в багатьох процесах метаболізму, наприклад:

  • Апоптоз — запрограмована смерть клітини;
  • Екзітотоксичне пошкодження нейронів за допомогою глютамату;
  • Клітинний ріст;
  • Регулювання клітинного окисно-відновлювального стану;
  • Синтез гему;
  • Синтез стероїдів.

Деякі мітохондріальні функції виконуються тільки в специфічних видах клітин. Наприклад, мітохондрії в клітинах печінки містять ферменти, які дозволяють їм детоксифікувати аміак, побічний продукт метаболізму білків. Мутація в генах, що регулюють будь-яку з цих функцій, може приводити до мітохондріальних хвороб.

Утім, найголовніша функція мітохондрій — це синтез АТФ.

Перетворення енергії

Основна роль мітохондрій — виробництво АТФ, що відображається великим числом білків у внутрішній мембрані призначених для цього завдання. Це робиться за рахунок окиснювання основних продуктів гліколізу: пірувату і NADH, які виробляються в цитозолі. Цей процес клітинного дихання, відомого як аеробне дихання, залежить від наявності кисню. Коли кількість кисню обмежена, гліколітична продукція метаболізується процесом анаеробного дихання, який перебігає незалежно від мітохондрій. Однак, виробництво АТФ з глюкози при аеробному диханні дає приблизно в 15 разів більше енергії, ніж при анаеробному.

Піруват та цикл трикарбонових кислот

Основні статті: Декарбоксиляція пірувату, цикл трикарбонових кислот

Кожна молекула пірувату, вироблена в процесі гліколізу, активно транспортується через внутрішню мітохондріальну мембрану в матрицю, де вона окиснюється і комбінується з коферментом A, утворюючи молекули CO2, ацетил-КоА і NADH.

NADH and FADH2: електронно-транспортний ланцюжок

Основна стаття: Електронно-транспортний ланцюжок

Виробництво тепла

У спеціалізованих тканинах деяких організмів головною функцією мітохондрій є виробництво тепла, що здійснюється завдяки роз'єднанню процесів окисного фосфорилювання та синтезу АТФ. Зокрема таку особливість має бурий жир наявний у новонароджених ссавців та звірів, які впадають у сплячку. Таку ж функцію виконують мітохондрії у тканинах суцвіття Symplocarpus foetidus, які ранньою весною сильно нагріваються, щоб збільшити випаровування пахучих речовин для приваблення запилювачів[3].

Походження

Відповідно до ендосимбіотичної теорії, мітохондрії походять від аеробних гетеротрофних бактерій, споріднених із сучасними альфа-протеобактеріями. Таку вільноживучу бактерію захопила інша клітина, здатна до фагоцитозу, проте не перетравила здобич, а вступила в симбіоз із нею.

Реплікація

Примітки

  1. Henze, K.; W. Martin (2003). Evolutionary biology: Essence of mitochondria. Nature 426: 127–128.
  2. Alberts, Bruce; et. al. (1994). Molecular Biology of the Cell. New York: Garland Publishing Inc.
  3. Berg JM, Tymoczko JL, Stryer L (2007). Biochemistry (вид. 6th). W.H. Freeman and Company. с. 533. ISBN 0-7167-8724-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.