Полярний розклад матриці
Квадратна матриця з комплексними елементами може бути представлена як добуток унітарної матриці та невід'ємної ермітової матриці:
де
- — невід'ємноозначені матриці,
- — унітарна матриця.
Матриця буде нормальною тоді і тільки тоді, коли будуть переставними (що рівнозначно до ).
Для доведення використаємо сингулярний розклад матриці:
Знаходження модуля
Оскільки:
матриці однозначно визначаються як:
Якщо матриця — нормальна, то за визначенням.
Знаходження повороту
Використавши отримаємо
Використавши знову ж отримаємо
Полярний розклад нормальної матриці
Якщо матриця — нормальна, тоді матриці — є переставними та нормальними, отже одночасно діагоналізуємими:
де
- — унітарна матриця,
- — невід'ємноозначена діагональна матриця,
- — унітарна діагональна матриця.
Тоді
Джерела
- Гантмахер Ф. Р. Теория матриц. — 2 изд. — Москва : Наука, 1967. — 576 с. — ISBN 5-9221-0524-8.(рос.)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.