Щільність множини
Густина (вимірної) множини на дійсній прямій , в точці ― границя (якщо вона існує) відношення
де — довільний відрізок, що містить , а ― його міра Лебега. Якщо замість міри розглядати зовнішню міру, то вийде означення зовнішньої густини в точці . Аналогічно вводиться густина в -вимірному просторі. При цьому довжини відрізків замінюються об'ємами відповідних -вимірних паралелепіпедів з гранями, паралельними координатним площинам, а границя розглядається при прямуванні до нуля діаметра паралелепіпеда. Для множин з виявляється корисним поняття правої (лівої) густини в точці , яке виходить із загального означення, якщо в ньому розглядати лише відрізки , мають лівим (правим) кінцем точку .
Пов'язані означення
- Точка густини — точка в якій густина дорівнює одиниці.
- Майже всі точки вимірної множини є його точками густини.
- Точка розрідження — точка в якій густина дорівнює нулю.
Див. також
Література
- Натансон И. П., Теория функций вещественной переменной, 3 изд., М., 1974;
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.