Граф Бігса — Сміта

Граф БігсаСміта  — 3-регулярний граф з 102 вершинами і 153 ребрами. Хроматичне число графу дорівнює 3, хроматичний індекс дорівнює 3, радіус дорівнює 7, діаметр — 7, а обхват — 9. Граф є також вершинно 3-зв'язковим і реберно 3-зв'язковим.

Граф БігсаСміта
Граф БігсаСміта
Вершин 102
Ребер 153
Радіус 7
Діаметр 7
Обхват 9
Автоморфізм 2448 (PSL(2,17))
Хроматичне число 3
Хроматичний індекс 3
Властивості Кубічний граф
Симетричний граф
Гамільтонів граф
дистанційно-регулярний граф

Всі кубічні дистанційно-регулярні графи відомі[1], граф Бігса — Сміта — один з 13-ти таких графів.

Алгебраїчні властивості

Група автоморфізмів графу Бігса — Сміта — це група порядку 2448[2], ізоморфна група проективної групи PSL(2,17). Вона діє транзитивно на вершини і ребра графу, тому граф Бігса — Сміта є симетричним. Граф має автоморфізм, який переводить будь-яку вершину в будь-яку іншу і будь-яке ребро в будь-яке інше ребро. У списку Фостера граф Бігса — Сміта, зазначений як F102A і є єдиним симетричним графом з 102 вершинами[3].

Граф Бігса — Сміта однозначно визначається за його спектром, безліччю власних значень та матрицею суміжності графу[4].

Характеристичний многочлен графу Бігса — Сміта дорівнює:

.

Галерея

Примітки

  1. AE Brouwer, AM Cohen, A. Neumaier. Distance-Regular Graphs. — New York : Springer-Verlag, 1989.
  2. Royle, G. F102A data[недоступне посилання з квітня 2019]
  3. M. Conder, P. Dobcsányi, «Trivalent Symmetric Graphs Up to 768 Vertices.» J. Combin. Math. Combin. Comput. 40, 41-63, 2 002.
  4. E. R. van Dam and WH Haemers, Spectral Characterizations of Some Distance-Regular Graphs. J. Algebraic Combin. 15, pages 189—202, 2003

Джерела

  • On trivalent graphs, NL Biggs, DH Smith — Bulletin of the London Mathematical Society, 3 (1971) 155—158.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.