Друга аксіома зліченності

Друга аксіома зліченності — властивість деяких топологічних просторів.

Визначення

Топологічний простір задовільняє другу аксіому зліченності, якщо він має зліченну базу. Тобто, існує зліченний набір відкритих множин , такий, що будь-яку відкриту множину можна подати як об'єднання множин з цього набору.

Властивості

  • Якщо простір задовольняє другу аксіому зліченності, то він задовільняє і першу, але не обов'язково навпаки.

Приклади

  • Метричні простори задовольняють другу аскіому зліченності: потрібним набором відкритих куль будуть кулі з раціональним радіусом побудовані на точках з раціональними кординатами, таких куль, очевидно, буде зліченна кількість.

Література

  • R.Wald, General Relativity
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.