Камера Вільсона

Ка́мера Ві́льсона детектор треків швидких заряджених частинок, в якому використовується здатність іонів виконувати роль зародків водяних крапель у переохолодженій перенасиченій парі.

Фото треків від іонізуючого випромінювання в камері Вільсона (короткі: від α-частинок, довгі: від β-частинок).

Для створення переохолодженої пари використовується швидке адіабатичне розширення, що супроводжується різким пониженням температури.

Швидка заряджена частинка, рухаючись крізь хмару перенасиченої пари, йонізує її. Процес конденсації пари відбувається швидше у місцях утворення йонів. Як наслідок, там, де пролетіла заряджена частинка, утворюється слід із крапельок води, який можна сфотографувати. Саме через такий вид треків камера отримала свою англійську назву cloud chamber — туманна кімната.

Камери Вільсона зазвичай поміщають у магнітне поле, в якому траєкторії заряджених частинок викривляються. Визначення радіусу кривизни траєкторії дозволяє визначити відношення питомого електричного заряду частинки, а, отже, ідентифікувати її.

Камеру винайшов у 1912 році шотландський фізик Чарльз Вільсон. За винахід камери Вільсон отримав Нобелівську премію з фізики 1927 року. У 1948 за вдосконалення камери Вільсона і проведені з нею дослідження Нобелівську премію отримав Патрік Блекетт.

Історія

Ще у останній чверті 19 століття, у роботах Кульє, Кісслінга і Ейткена було показано, що пил грає важливу роль в утворенні туману. Намагаючись відтворити в лабораторії це природне явище, дослідники виявили, що в очищеному повітрі туман не утворюється.[1] Також, було встановлено, що краплинки утворюються саме навколо пилинок, і мають розміри, порядку їх розмірів. Це стало розв’язанням проблеми, поміченої лордом Кельвіном, згідно якої краплина води при зростанні мала б проходити стадію, на якій вона має розміри, порівняні з розмірами молекул, проте краплина таких розмірів випаровується настільки швидко, що зникає.[1]

У 1897 році Вільсон показав, що навіть у повітрі, очищеному від пилу, туман утворюється при розширенні більшому, ніж в 1,37 разів. При цьому, при розширенні від 1,25 до 1,37 разів утворюються лише окремі крапельки. У 1899 році він же виявив, що, якщо помістити рентгенівську трубку, або деяку кількість урану, то туман починає утворюватися і при розширенні 1,25.[1] Джозеф Томпсон показав, що центрами конденсації в цих випадках стають іони.

Також Вільсон з’ясував, що вода більш охоче конденсується на негативно заряджених іонах. Томас Лебі дослідив пари інших речовин і з’ясував, що всі з тих, які він перевірив (оцтова кислота, хлороформ, етиловий спирт, хлорбензол та інші) мають протилежну тенденцію — позитивні іони викликають конденсацію швидше, ніж негативні.[1]

Шматочок радіоактивного ториту у камері Вільсона і треки випромінюваних їм частинок

Перший детектор заряджених частинок, створений Вільсоном у 1912 році, мав вигляд скляного циліндра діаметром 16,5 сантиметра і висотою 3,5 сантиметра. Всередині камери знаходилася ємність, у якій знаходилося дерев’яне кільце, опущене у воду. Завдяки випаровуванню з поверхні кільця камера насичувалася парою. Камера була з’єднана трубкою з вентилем з колбою, з якої було відкачане повітря. При повороті вентиля, тиск падав, повітря охолоджувалося і пара ставала перенасиченою, завдяки чому заряджені частинки лишали за собою смужки туману. [2] В той же час, вмикалася фотокамера і яскравий спалах світла.

Основним недоліком камери був великий час, що був потрібний для її підготовки. Для того, щоб побороти цей недолік, Такео Шимізу[3] у 1921 році створив альтернативний варіант камери, що була оснащена поршнем, що неперервно рухався, стискаючи-розтискаючи повітря, завдяки чому фотографію можна було робити кожні кілька секунд. Проте модель Шимізу не завжди могла забезпечити хорошу якість знімків, через те, що повітря в ній розширювалося занадто повільно.[1]

У 1927 році Петро Капіця і Дмитро Скобєльцин запропонували поміщати камеру в магнітне поле. Це дозволило легко розділяти на знімках треки позитивних і негативних частинок, а також визначати їх співвідношення маси до заряду.[4]

Перша фотографія, на якій зафіксовано трек позитрону

У 1927 році, прагнучи поєднати найкращі сторони кожної з моделей, Патрік Блекетт видозмінив камеру Шимізу, додавши туди пружину, що забезпечувала різке розширення. За допомогою цього, і ще деяких покращень, у 1929 році його модель камери щоденно робила більш ніж 1200 знімків, на кожному з яких були зображені десятки треків альфа-частинок. Саме Блекетт перший одержав фотографії розщеплення ядер азоту альфа-частинками.

У 1933 році Вільсон запропонував іншу конструкцію камери, що використовувала гумову діафрагму замість поршня.[1]

У тому ж році Блекетт і Джузеппе Оккіаліні розробили варіант камери, що розширювалася лише коли два лічильника, один з яких знаходиться над, а інший під нею, спрацьовували. Ця зміна дозволяла значно підвищити ефективність роботи камери у випадку, якщо вона має фіксувати рідкісні події, таких як космічні промені. Блекетт і Оккіаліні вказують, що на 80% фотографій, отриманих таким чином були присутні сліди космічних променів.[1]

У 1952 році Дональдом Глазером була винайдена бульбашкова камера, після чого значення камери Вільсона почало зменшуватись. Бульбашкова камера дозволяла фіксувати події точніше і частіше, а тому стала основним інструментом нових досліджень.

Будова

Зазвичай, камера Вільсона складається з циліндра, що містить насичене парою повітря, і поршня, що може ходити у цьому циліндрі. При опусканні поршня повітря різко охолоджується, і камера стає придатною для роботи. Іншим, більш сучасним варіантом є використання замість поршня гумової діафрагми.[1] В цьому випадку камера має перфороване дно, під яким розташована діафрагма, в яку закачане повітря під тиском. Тоді для початку роботи потрібно лише випустити повітря з діафрагми в атмосферу або спеціальну ємність. Такі камери є дешевшими, простішими у використанні, а також менше нагріваються при роботі.

Для частинок низьких енергій тиск повітря в камері опускають нижче атмосферного, тоді як для фіксації високоенергетичних частинок, навпаки, повітря в камеру закачують під тиском в десятки атмосфер. Камеру заповнюють парою води і спирту. Така суміш використовується через те, що водяна пара краще конденсується на негативних іонах, а пара спирту — на позитивних. [2]

Час активної роботи камери триває від кількох сотих, до кількох секунд, що проходять від розширення повітря і до того часу, доки камера не заповниться туманом, після чого камера очищується і може запускатись повторно. Повний цикл використання зазвичай складає близько хвилини.[2] Джерело випромінювання може поміщатися всередину камери, або знаходитися ззовні її. В цьому випадку частинки потрапляють в камеру через прозорий екран.

Використання

Значення камери Вільсона для фізики елементарних частинок важко переоцінити — протягом десятків років вона була єдиним ефективним способом безпосередньо спостерігати елементарні частинки. З її допомогою були відкриті позитрон та мюон, а також досліджені ядерні реакції альфа-частинок з атомами азоту. [5] Після винайдення бульбашкової і іскрової камери значення камери Вільсона почало зменшуватися, проте, через значно меншу вартість, порівняно з більш прогресивними детекторами, вона все ще використовується у деяких галузях.

Питома іонізація

Питомою іонізацією називають кількість пар іонів, що створює частинка при прольоті через речовину за одиницю відстані. При цьому, електрони, що вибиваються з атомів, можуть мати достатню енергію для того, щоб іонізувати інші атоми. Це явище називають вторинною іонізацією. У камері Вільсона такі електрони будуть виглядати як відгалуження від основної траєкторії польоту частинки, або ж просто як згустки пари (якщо енергія електронів не дуже велика). В той час як підрахувати питому іонізацію можна багатьма способами ( наприклад, за допомогою лічильника Гейгера), для розділення первинної і вторинної іонізації камера Вільсона є найбільш простим методом.[1]

Пробіг

Довжина вільного пробігу частинки в речовині є важливим показником, що має бути відомим для захисту від випромінювання. Камера Вільсона дозволяє вимірювати як середній пробіг, так і розподіл пробігів. [1] За допомогою цих даних можна достатньо точно визначити як енергію частинки, так і товщину захисного шару, що блокує цей тип радіації.

Див. також

Примітки

Література

  • І.М.Кучерук, І.Т.Горбачук, П.П.Луцик (2006). Загальний курс фізики: Навчальний посібник у 3-х т. Київ: Техніка.

Посилання

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.