Комплекснозначна функція

Комплекснозначна функція в теорії функцій дійсної змінної функція, що набуває комплексних значень: .

Таку функцію можна подати у вигляді:

,

де і  — дійсні функції. У цьому випадку функцію називають дійсною частиною функції , а  — її уявною частиною. У зв'язку з таким розкладом, на комплекснозначні функції природно переносяться всі поняття, що вводяться для дійснозначних функцій, зокрема, комплекснозначна функція вважається неперервною (диференційовною, аналітичною, вимірною, гармонійною), якщо її дійсна і уявна частини є неперервними (диференційовними, аналітичними, вимірними, гармонійними) функціями. Інтеграл комплекснозначної функції визначається так:

.

Однак не всі властивості, виконані для дійсної й уявної частини одночасно, можна поширити на комплекснозначні функції. Зокрема, для комплекснозначних функцій у загальному випадку не діє теорема Ролля, наприклад, похідна комплекснозначної функції дійсного аргументу:

на інтервалі не перетворюється на нуль, хоча в кінцевих точках відрізка значення функції рівні .

Література

  • Титчмарш Е. Теория функций. — 2-е изд., перераб. М. : Наука, 1980. — 464 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.