Літій-полімерний акумулятор

Лі́тій-поліме́рний акумуля́тор (англ. lithium-ion polymer batteries, lithium polymer batteries, скор. Li-Pol, Li-poly, LiPo, LIP) — один із запропонованих типів літієвих електричних акумуляторів із категорії вторинних електричних батарей, який відрізняється від звичайного літій-іонного акумулятора лише типом електроліту, що використовується при їх виготовленні. У випадку з Li-ion — це гелеподібний або рідкий електроліт, у випадку з Li-Pol — спеціальний щільний[1] полімер, насичений розчином літію[2].

Літій-іонний полімерний акумулятор мобільного телефону

На сьогодні існує непорозуміння, викликане маркетинговим підходом. Представлені на ринку літій-полімерні акумулятори насправді є звичайними літій-іонними акумуляторами у пластиковому корпусі. Технічно вони відрізняються лише зовнішньою формою та оболонкою (так званий pouch-bag формат). Реальні літій-полімерні акумулятори через свої надзвичайно низькі характеристики не були представлені для продажу на ринку[3][4], хоча через їх перспективні переваги роботи по їх дослідженню та розробці проводяться і надалі[5][6][7].

Походження дизайну та термінології

Оригінальний тип батарей, що називалися «літій-полімерні», технологічно були подальшим розвитком звичайних літій-іонних акумуляторів та літієвих батарей. Головною відмінністю було використання щільного полімерного електроліту (англ. solid polymer electrolyte, SPE), наприклад, поліетиленгліколю, поліакрилонітрилу, оргскла (поліметилметакрилат) або полівіниліденфториду, замість електроліту з солями літія (наприклад, LiPF6), що містяться у органічному розчиннику таких як етиленкарбонат ((CH2O)2CO), диметилкарбонат або диетилкарбонат (OC(OCH2CH3)2)[3].

Твердий електроліт може бути поділений на три наступних види: сухий, гелевий та пористий. Сухий електроліт був першим, що використовувався у прототипах батарей у 1978 році Мішелем Армандом[8][9] та у 1985 році компаніями ANVAR, Elf Aquitaine та Hydro Quebec[4]. З 1990 року кілька організацій, зокрема такі як Mead та Valence з США та GS Yuasa з Японії, розробили акумулятори з гелевим полімерним електролітом[4]. У 1996 році компанія Bellcore оголосила про створення літій-полімерного акумулятора з використанням пористого твердого полімерного електроліту[4].

Паралельно до розвитку «полімерного електроліту» термін «літій-полімерний акумулятор» почав використовуватись для звичайних літій-іонних акумуляторів у гнучкому корпусі-«мішечку» (англ. pouch bag). Приблизний час появи таких акумуляторів на ринку побутової електроніки був 1995 рік.

Плутанина у назві може походити від непорозуміння з конструкційної точки зору звичайного літій-іонного елемента. Типовий акумулятор складається з чотирьох основних компонентів: позитивний електрод (катод), негативний електрод (анод), сепаратор та електроліт. Власне сепаратор може бути полімерним та представляти собою мікропористу плівку з поліетилену або поліпропілену, таким чином навіть акумулятор з рідким електролітом містить «полімерний» компонент. Додатково власне катод може бути розділений на три частини — оксиди літію (такі як LiCoO2 чи LiMn2O4), струмопровідна додаткова частина та полімерний зв'язувач з полівіниліденфториду[10][11]. Анод також може містити три складові, за винятком того, що замість оксиду літію застосовується вуглець[10][11].

Таким чином, навіть за відсутності полімерного сепаратора та будь-якого електроліту акумулятор може містити «полімерний» компонент у складі активних компонентів електродів. Цей полімер, як правило, складає лише 5 % від загальної ваги акумулятора та не бере жодної участі в електрохімічних реакціях, а використовується виключно для з'єднання активних частин для підтримки електропровідності та надійності з'єднання між міддю та алюмінієм, що є струмоприймачем батареї[11].

Застосування

Трьохелементний літій-полімерний акумулятор 1300 мА/год. , 11,1 Вольт встановлений на радіокерованій моделі літака

Безпека використання

Літій-іонні полімерні акумулятори мають ті ж самі проблеми, що й інші види літій-іонних акумуляторів. Перезарядження, низький розряд, надмірний перегрів, внутрішнє коротке замикання, пробивання корпусу можуть привести до руйнування акумулятора, витоку електроліту та навіть загорання[12].

Напруга і стан заряду

Напруга окремого LiPo елемента залежить від його хімічного складу і коливається від приблизно 4,2 В (повністю заряджений) до приблизно 2,7—3,0 В (повністю розряджений), де номінальна напруга становить 3,6 B або 3,7 В (приблизно середнє значення найвищого та найнижчого значення) для елементів на основі оксидів літію-металу (наприклад, LiCoO2).

Для порівняння: літій-залізо-фосфатний(LiFePO4) елемент від 3,6—3,8 В (повністю заряджений) до 1,8—2,0 В (повністю розряджений).

Точні номінали напруг роботи елемента повинні бути вказані в специфікації продукту, що дозволить правильно спроектувати електронну схему, яка буде запобігати перезаряджанню або повному розряджанню під час його використання.

Акумуляторні батареї з LiPo елементами, з’єднаними послідовно та паралельно, мають окремі контакти для кожного елемента. Спеціалізований зарядний пристрій може контролювати заряд кожного елемента, щоб усі елементи були заряджені до однакової напруги - мали однаковий стан заряду (SOC).[13]

Літієві акумулятори зі справжнім полімерним електролітом

Хоча назва «літій-полімерні» застосовується переважно до літій-іонних акумуляторів у гнучкому корпусі (англ. pouch format), що містить рідкий електроліт існують також і акумулятори зі справжнім полімерним електролітом, які, тим не менш, так і не були комерціалізовані та досі є темою досліджень. Прототипами таких акумуляторів можна вважати ті, що є проміжними між традиційними літій-іонними та повністю пластиковими акумуляторами (англ. solid-state lithium-ion battery)[14].

Простіший підхід — це використання полімерної матриці з полівіниліденфториду або поліакрилонітрилу, заповненою гелем зі звичайними солями та розчинниками (наприклад, згадана вище LiPF6 у етиленкарбонаті, диметилкарбонаті або диетилкарбонаті). Ніші згадує, що Sony розпочала розробки літій-іонних акумуляторів з гелевим полімерним електролітом у 1988 році, ще до комерціалізації звичних на сьогодні акумуляторів з рідким електролітом у 1991 році.[15] У той час вважалось, що полімерні акумулятори є найбільш перспективними та те, що вони стануть незамінними.[16] З часом цей тип акумуляторів був виведений на ринок у 1998 році.[15] Однак Скорсаті аргументує, що, за умови суворого дотримання термінології, заповнені гелем мембрани не можна вважати «справжніми» полімерними електролітам, радше гібридними системами, де електроліт у рідкій фазі утримується у полімерній матриці[14]. Хоча ці електроліти і можуть бути сухими на дотик, вони все одно мають у собі від 30 % до 50 % рідкого розчинника.[17] З огляду на таку позицію питання визначення «полімерного акумулятора» залишається відкритим.

Інший термін, що застосовується у літературі для даної системи включає назву «гібридний полімерний електроліт» (англ. hybrid polymer electrolyte), у якому слово «гібрид» позначає комбінацію полімерної матриці, рідкого розчинника та солі[18]. Ця система подібна до тої, що розробили Bellcore у 1996[19], що мала назву «пластиковий» літій-іонний акумулятор (англ. PLiON) та була комерціалізована у 1999 році[18].

Щільним полімерним електролітом може бути, наприклад, суміш літій-біс-(флорсульфоніл)іміду (LiFSI) з високомолекулярним поліетиленгліколем[5], чи високомолекулярним політриметил карбонатом (PTMC)[6].

Ефективність таких електролітів зазвичай вимірюється в півелементній конфігурації (англ. half-cell configuration) з використанням як другого електроду металічного літію, створюючи систему подібну до літієвої батареї, але також виконуються тести з типовими катодними матеріалами для літій-іонних акумуляторів, таких як LiFePO4.

Інший підхід до створення акумулятора з полімерними електролітом полягає у використанні неорганічної іонної рідини, наприклад, 1-бутил-3-метилімідазоліум тетрафлороборат (англ. 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM]BF4) як пластифікатора в мікропористій полімерній матриці з полівінилідена флорида-ко-гексафлоропропілена/поліметилметакрилата(англ. poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methyl methacrylate), PVDF-HFP/PMMA)[7].

Див. також

Примітки

  1. В англійській мові використовується термін solid polymer electrolyte. Слово solid тут у технічному значені має сенс не рідкий, а не просто тверде тіло, оскільки тепер існують гелеві-тверді гібриди, які все одно описуються словом solid
  2. Шембель О. М., Білогуров В. А. Основні характеристики сучасних хімічних джерел струму різних електрохімічних систем // Сучасна спеціальна техніка. Науково-практичний журнал. — № 2(17), 2009. (с.:66-86)
  3. Manuel Stephan, A.; Nahm, K. S. (26 липня 2006). Review on composite polymer electrolytes for lithium batteries. Polymer 47 (16): 5952–5964. doi:10.1016/j.polymer.2006.05.069.
  4. Murata, Kazuo; Izuchi, Shuichi; Yoshihisa, Youetsu (3 січня 2000). An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta 45 (8-9): 1501–1508. doi:10.1016/S0013-4686(99)00365-5.
  5. Zhang, Heng; Liu, Chengyong; Zheng, Liping (1 липня 2014). Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochimica Acta 133: 529–538. doi:10.1016/j.electacta.2014.04.099.
  6. Sun, Bing; Mindemark, Jonas; Edström, Kristina; Brandell, Daniel (1 вересня 2014). Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262: 738–742. doi:10.1016/j.ssi.2013.08.014.
  7. Zhai, Wei; Zhu, Hua-jun; Wang, Long (1 липня 2014). Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries. Electrochimica Acta 133: 623–630. doi:10.1016/j.electacta.2014.04.076.
  8. M.B. Armand; J.M. Chabagno; M. Duclot (20–22 September 1978). Extended Abstracts. Second International Meeting on Solid Electrolytes. St. Andrews, Scotland.
  9. M.B. Armand, J.M. Chabagno & M. Duclot (1979). Poly-ethers as solid electrolytes. У P. Vashitshta; J.N. Mundy & G.K. Shenoy. Fast ion Transport in Solids. Electrodes and Electrolytes. North Holland Publishers, Amsterdam.
  10. Yazami, Rachid (2009). Chapter 5: Thermodynamics of Electrode Materials for Lithium-Ion Batteries. У Ozawa, Kazunori. Lithium ion rechargeable batteries. Wiley-Vch Verlag GmbH & Co. KGaA. ISBN 978-3-527-31983-1.
  11. Nagai, Aisaku (2009). Chapter 6: Applications of Polyvinylidene Fluoride-Related Materials for Lithium-Ion Batteries. У Yoshio, Masaki; Brodd, Ralph J.; Kozawa, Akiya. Lithium-ion batteries. Springer. ISBN 978-0-387-34444-7. doi:10.1007/978-0-387-34445-4.
  12. Графік з інцидентами з батареями від FAA, дані на 11 грудня 2007 року. Архів оригіналу за 19 січня 2017. Процитовано 15 вересня 2016.
  13. Lithium polymer battery. Wikipedia (англ.). 10 січня 2022. Процитовано 14 січня 2022.
  14. Scrosati, Bruno (2002). Chapter 8: Lithium polymer electrolytes. У van Schalkwijk, Walter A.; Scrosati, Bruno. Advances in Lithium-ion batteries. Kluwer Academic Publishers. ISBN 0-306-47356-9.
  15. Yoshio, Masaki; Brodd, Ralph J.; Kozawa, Akiya, ред. (2009). Lithium-ion batteries. Springer. ISBN 978-0-387-34444-7. doi:10.1007/978-0-387-34445-4.
  16. Nishi, Yoshio (2002). Chapter 7: Lithium-Ion Secondary batteries with gelled polymer electrolytes. У van Schalkwijk, Walter A.; Scrosati, Bruno. Advances in Lithium-ion batteries. Kluwer Academic Publishers. ISBN 0-306-47356-9.
  17. Brodd, Ralf J. (2002). Chapter 9: Lithium-Ion cell production processes. У van Schalkwijk, Walter A.; Scrosati, Bruno. Advances in Lithium-ion batteries. Kluwer Academic Publishers. ISBN 0-306-47356-9.
  18. Tarascon, Jean-Marie; Armand, Michele (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414: 359–367. PMID 11713543. doi:10.1038/35104644.
  19. Tarascon, J.-M.; Gozdz, A. S.; Schmutz, C.; Shokoohi, F.; Warren, P. C. (July 1996). Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics (Elsevier). 86-88 (Part 1): 49–54. doi:10.1016/0167-2738(96)00330-X.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.