Середнє логарифмічне

У математиці, середнім логарифмічним називається функція двох невід'ємних чисел, що рівна частці їх різниці та логарифма їх частки. А саме

Тривимірний графік середнього логарифмічного.

Середнє логарифмічне зокрема використовується для задач теплообміну і масообміну.

Зв'язок з іншими середніми значеннями

<ref>
Ці нерівності можна отримати, наприклад, як наслідок нерівності Ерміта — Адамара.

Інтерпретація в математичному аналізі

Теорема Лагранжа

Із теореми Лагранжа

середнє логарифмічне є значенням , якщо за функцію взяти :

і звідси

Інтегрування

Середнє логарифмічне також можна інтерпретувати як площу під експоненційною кривою:

Звідси зокрема легко отримати властивість .

Узагальнення

Через теорему Лагранжа

Середнє логарифмічне можна узагальнити на змінні розглянувши узагальнену теорему Лагранжа для розділених різниць для логарифма -ї похідної. Тоді можна ввести

де — розділена різниця логарифму.

Для випадку трьох змінних:

.

Через інтегральний вираз

Узагальнення інтегралу, який дорівнює середньому логарифмічному дає інше узагальнення. Нехай симплекс і для деякої міри у якій об'єм симплекса дорівнює 1, отримуємо

За допомогою розділених різниць можна записати

.

Для випадку трьох змінних:

.

Див. також

Література

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.