Список груп сферичної симетрії
Групи сферичної симетрії також називають точковими групами в тривимірному просторі, однак у цій статті розглянуто тільки скінченні симетрії. Існує п'ять фундаментальних класів симетрії, притаманних трикутним фундаментальним областям: діедральна, циклічна, тетраедральна, октаедральна та ікосаедральна симетрія.
Симетрії-інволюції Cs, (*) [ ] = |
Циклічна симетрія Cnv, (*nn) [n] = |
Діедральна симетрія Dnh, (*n22) [n,2] = | |
Групи багатогранників, [n,3], (*n32) | |||
---|---|---|---|
Тетраедральна симетрія Td, (*332) [3,3] = |
Октаедральна симетрія Oh, (*432) [4,3] = |
Ікосаедральна симетрія Ih, (*532) [5,3] = |
В статті перелічено групи згідно з символами Шенфліса, нотацією Коксетера[1], орбіфолдною нотацією[2] і порядком. Конвей використовував варіант запису Шенфліса, заснований на алгебраїчній структурі групи кватерніонів, з позначеннями однією або двома великими літерами і повним набором нижніх числових індексів. Порядок групи позначається індексом, якщо тільки він не подвоюється символом плюс-мінус («±»), який передбачає центральну симетрію [3].
Також наведено символіку Германа — Могена (міжнародна нотація). Групи кристалографії, загалом 32, є підмножиною з елементами порядку 2, 3, 4 і 6[4].
Симетрії-інволюції
Є чотири симетрії, які є оберненими собі, тобто інволюціями: тотожне перетворення (C1), дзеркальна симетрія (Cs), обертова симетрія (C2), і центральна симетрія (Ci).
Міжн. | Геом. | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. область |
---|---|---|---|---|---|---|---|
1 | 1 | 11 | C1 | C1 | ][ [ ]+ |
1 | |
2 | 2 | 22 | D1 = C2 |
D2 = C2 |
[2]+ | 2 |
Міжн. | Геом. | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. область |
---|---|---|---|---|---|---|---|
1 | 22 | × | Ci = S2 |
CC2 | [2+,2+] | 2 | |
2 = m |
1 | * | Cs = C1v = C1h |
±C1 = CD2 |
[ ] | 2 |
Циклічна симетрія
Існують чотири нескінченних сімейства циклічної симетрії з n=2 і вище (n може дорівнювати 1 як особливий випадок немає симетрії).
Міжн. | Гео | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. |
---|---|---|---|---|---|---|---|
2 | 2 | 22 | C2 = D1 |
C2 = D2 |
[2]+ [2,1]+ |
2 | |
mm2 | 2 | *22 | C2v = D1h |
CD4 = DD4 |
[2] [2,1] |
4 | |
4 | 42 | 2× | S4 | CC4 | [2+,4+] | 4 | |
2/m | 22 | 2* | C2h = D1d |
±C2 = ±D2 |
[2,2+] [2+,2] |
4 |
Міжн. | Геом. | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. область |
---|---|---|---|---|---|---|---|
3 4 5 6 n |
3 4 5 6 n |
33 44 55 66 nn |
C3 C4 C5 C6 Cn |
C3 C4 C5 C6 Cn |
[3]+ [4]+ [5]+ [6]+ [n]+ |
3 4 5 6 n |
|
3m 4mm 5m 6mm - |
3 4 5 6 n |
*33 *44 *55 *66 *nn |
C3v C4v C5v C6v Cnv |
CD6 CD8 CD10 CD12 CD2n |
[3] [4] [5] [6] [n] |
6 8 10 12 2n |
|
3 8 5 12 - |
62 82 10.2 12.2 2n.2 |
3× 4× 5× 6× n× |
S6 S8 S10 S12 S2n |
±C3 CC8 ±C5 CC12 CC2n / ±Cn |
[2+,6+] [2+,8+] [2+,10+] [2+,12+] [2+,2n+] |
6 8 10 12 2n |
|
3/m=6 4/m 5/m=10 6/m n/m |
32 42 52 62 n2 |
3* 4* 5* 6* n* |
C3h C4h C5h C6h Cnh |
CC6 ±C4 CC10 ±C6 ±Cn / CC2n |
[2,3+] [2,4+] [2,5+] [2,6+] [2,n+] |
6 8 10 12 2n |
Діедральна симетрія
Існує три нескінченних сімейства з діедральною симетрією з n рівним 2 і більше (n може дорівнювати 1 як особливий випадок).
Міжн. | Геом. | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. область |
---|---|---|---|---|---|---|---|
222 | 2.2 | 222 | D2 | D4 | [2,2]+ | 4 | |
42m | 42 | 2*2 | D2d | DD8 | [2+,4] | 8 | |
mmm | 22 | *222 | D2h | ±D4 | [2,2] | 8 |
Міжн. | Геом. | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. область |
---|---|---|---|---|---|---|---|
32 422 52 622 |
3.2 4.2 5.2 6.2 n.2 |
223 224 225 226 22n |
D3 D4 D5 D6 Dn |
D6 D8 D10 D12 D2n |
[2,3]+ [2,4]+ [2,5]+ [2,6]+ [2,n]+ |
6 8 10 12 2n |
|
3m 82m 5m 12.2m |
62 82 10.2 12.2 n2 |
2*3 2*4 2*5 2*6 2*n |
D3d D4d D5d D6d Dnd |
±D6 DD16 ±D10 DD24 DD4n / ±D2n |
[2+,6] [2+,8] [2+,10] [2+,12] [2+,2n] |
12 16 20 24 4n |
|
6m2 4/mmm 10m2 6/mmm |
32 42 52 62 n2 |
*223 *224 *225 *226 *22n |
D3h D4h D5h D6h Dnh |
DD12 ±D8 DD20 ±D12 ±D2n / DD4n |
[2,3] [2,4] [2,5] [2,6] [2,n] |
12 16 20 24 4n |
Симетрії багатогранників
Існує три типи симетрії багатогранників: тетраедральна симетрія, октаедральна симетрія і ікосаедральна симетрія, названі за правильними багатогранниками з трикутними гранями, які мають відповідні симетрії.
Міжн. | Геом. | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. область |
---|---|---|---|---|---|---|---|
23 | 3.3 | 332 | T | T | [3,3]+ = [4,3+]+ |
12 | |
m3 | 43 | 3*2 | Th | ±T | [4,3+] | 24 | |
43m | 33 | *332 | Td | TO | [3,3] = [1+,4,3] |
24 |
Міжн. | Геом. | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. область |
---|---|---|---|---|---|---|---|
432 | 4.3 | 432 | O | O | [4,3]+ = [[3,3]]+ |
24 | |
m3m | 43 | *432 | Oh | ±O | [4,3] = [[3,3]] |
48 |
Міжн. | Геом. | Орб. | Шенф. | Конвей | Кокс. | Пор. | Фунд. область |
---|---|---|---|---|---|---|---|
532 | 5.3 | 532 | I | I | [5,3]+ | 60 | |
532/m | 53 | *532 | Ih | ±I | [5,3] | 120 |
Див. також
- Кристалографічна точкова група симетрії
- Група трикутника
- Список планарних груп симетрії
- Точкові групи у двовимірному просторі
Примітки
Література
- Peter R. Cromwell, Polyhedra (1997), Appendix I
- Donald E. Sands. Crystal Systems and Geometry // Introduction to Crystallography. — Mineola, New York : Dover Publications, Inc, 1993. — С. 165. — ISBN 0-486-67839-3.
- Джон Х. Конвей, Дерек А. Смит. О кватернионах и октавах = On Quaternions and Octonions. — Москва : МЦНМО, 2009. — ISBN 978-5-94057-517-7.
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass. The Symmetries of Things. — New-York : A K Peters/CRC Press,, 2008. — ISBN 978-1-56881-220-5.
- H.S.M. Coxeter. Kaleidoscopes: Selected Writings of H.S.M. Coxeter / F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss,. — Wiley-Interscience Publication,, 1995. — ISBN 978-0-471-01003-6.
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380—407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559—591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- Norman Johnson. Chapter 11: Finite symmetry groups // Geometries and Transformations. — 2015.
- D. Hestenes, J. Holt. The Crystallographic Space groups in Geometric algebra // Journal of Mathematical Physics. — 2007. — Вип. 48, 023514 (3 листопада).
Посилання
- Finite spherical symmetry groups
- Weisstein, Eric W. Schoenflies symbol (англ.) на сайті Wolfram MathWorld.
- Weisstein, Eric W. Crystallographic point groups (англ.) на сайті Wolfram MathWorld.
- Simplest Canonical Багатогранників Symmetry of Each Type, by David I. McCooey