Теорема про рівні вписані кола
Теорема про рівні вписані кола бере початок у японських сангаку і стосується такої побудови: серія променів проводиться з якоїсь точки до перетину з заданою прямою так, що кола, вписані в трикутники, утворені суміжними променями і прямою, однакові. На ілюстрації однакові сині кола визначають кути між променями, як описано вище.
Формулювання теореми
Теорема стверджує, що за описаної вище побудови кола, вписані в трикутники, утворені променями через один (тобто отримані об'єднанням двох сусідніх трикутників), через два і т. д., також рівні. Випадок сусідніх трикутників показаний на малюнку зеленими колами: всі вони однакові.
З факту, що твердження теореми не залежить від кута між початковим променем і заданою прямою, можна зробити висновок, що теорема скоріше належить до математичного аналізу, а не геометрії, і повинна мати стосунок до неперервної масштабної функції, яка визначає відстань між променями. Фактично цією функцією є гіперболічний синус.
Лема
Теорема є прямим наслідком такої леми.
Припустимо, що n-й промінь утворює з нормаллю до базової прямої кут . Якщо параметризовано відповідно до рівності , то значення , де і — дійсні сталі, визначають послідовність променів, які задовольняють умовам вписаних кіл (див. вище), і більше того, будь-яку послідовність променів, що задовольняють цим умовам, можна отримати належним вибором параметрів і .
Доведення леми
На малюнку суміжні промені PS і PT утворюютьють з прямою PR, перпендикулярною до базової прямої RT, кути і .
Проведемо через центр O вписаного в трикутник PST кола пряму QY, паралельну до базової прямої. Це коло дотикається до променів у точках W і Z. відрізок PQ має довжину , а відрізок QR має довжину , що дорівнює радіусу вписаного кола.
Тоді OWX подібний PQX, OZY подібний PQY, а з XY = XO + OY ми отримуємо
Це відношення на множині кутів виражає умову рівності вписаних кіл.
Для доведення леми покладемо . Цей вираз можна перетворити на .
Використовуючи рівність , застосовуємо додаткові правила для і і перевіряємо, що відношення рівності кіл задовольняється виразом
Ми отримали вираз для параметра в термінах геометричних величин і . Далі, визначаючи , отримуємо вираз для радіусів вписаних кіл, утворених вибором кожного N-го променя стороною трикутника:
Див. також
Література
- Tabov J. A note on the five-circle theorem // Mathematics Magazine. — 1989. — Т. 63. — № 2. — С. 92-94.