Трикутник Паскаля
Трикутник Паскаля — це геометрично, на зразок трикутника, розміщені біноміальні коефіцієнти. Це математичне поняття названо на честь Блеза Паскаля. Таку назву вживають переважно в західному світі, адже математики Індії, Персії, Китаю та Італії знали цей трикутник ще за кілька століть перед Паскалем.
Ряди трикутника Паскаля умовно пронумеровані згори, починаючи з нульового, й числа в нижньому ряді відносно чисел у попередньому ряді завжди розміщені ступінчасто й навскіс. Побудувати цей трикутник просто. Кожне число в кожному ряді одержуємо, додавши два числа, розміщені вгорі (зліва і справа). Якщо зліва або справа немає числа, підставляємо нуль на його місце. Наприклад, перше число в першому ряді 0 + 1 = 1, тоді як числа 1 і 3 в третьому ряді утворюють число 4 в четвертому ряді: 1 + 3 = 4.
Правило Паскаля стверджує: якщо
k-й біноміальний коефіцієнт в біноміальному ряді для (x + y)n, тоді
для будь-якого додатного цілого n і будь-якого цілого k між 0 і n.
Шаблони і властивості
Трикутник Паскаля має багато властивостей і містить багато числових шаблонів.
Рядки
- Сума елементів кожного рядка є подвоєна сума попереднього. Це тому, що кожен елемент рядка творить два елементи наступного рядка. Сума елементів рядка n дорівнює 2n.
- Добуток елементів рядка, послідовність таких добутків послідовність A001142 з Онлайн енциклопедії послідовностей цілих чисел, OEIS стосується бази натурального логарифму, e.[1][2] А саме, визначимо послідовність sn так:
- Тоді співвідношення послідовних добутків рядків є
- і співвідношення цих співвідношень є
- Правий бік цього рівняння набуває форми визначення e через границю
- Значення рядка, якщо кожен елемент розглядати як десятковий розряд ( і числа більші ніж 9 переносити відповідно) є степенем 11 ( 11n, для рядка n). Отже, у рядку 2, ⟨1, 2, 1⟩ стає 112, тоді як ⟨1, 5, 10, 10, 5, 1⟩ у п'ятому рядку стає (після перенесень) 161,051, тобто 115. Цю властивість пояснюють встановлюючи x = 10 у біноміальному розкладі (x + 1)n, і припасовуючи значення до десяткової системи. Але x можна обрати так, щоб рядки представляли значення в будь-якій основі.
- У трійковій: 1 2 13 = 42 (16)
- ⟨1, 3, 3, 1⟩ → 2 1 0 13 = 43 (64)
- За основою 9: 1 2 19 = 102 (100)
- 1 3 3 19 = 103 (1000)
- ⟨1, 5, 10, 10, 5, 1⟩ → 1 6 2 1 5 19 = 105 (100000)
- Зокрема, для x = 1 значення в позиціях залишаються сталими (1позиція=1). Отже, їх можна просто додати.
- Сума квадратів елементів рядка n дорівнює середньому елементу рядка 2n. Наприклад, 12 + 42 + 62 + 42 + 12 = 70. У загальній формі:
- Іншим цікавим шаблоном є те, що для будь-якого рядка n, де n є парним, середній елемент мінус елемент на дві позиції ліворуч дорівнює числу Каталана, а саме (n/2 + 1)му числу Каталана. Наприклад: на четвертому рядку, 6 − 1 = 5, що є третім числом Каталана і 4/2 + 1 = 3.
- Також цікавою властивістю є те, що в рядку p де p це просте число, всі елементи рядка діляться на p. Це можна легко довести, оскільки якщо , тоді p не має дільників окрім 1 і себе. Кожен елемент трикутника це ціле число, тоді за визначенням і це дільники . Однак, власне p не може з'явитись у дільнику, отже p (або його кратне) повинно залишитись у чисельнику.
- Парність: Щоб порахувати кількість непарних чисел у рядку n, переведіть n у двійкову систему. Нехай x буде кількістю одиничок у двійковому представленні. Тоді кількість непарних елементів буде 2x.[3]
- Кожен елемент у рядку 2n-1, n ≥ 0, є непарним.[4]
- Полярність: Інший цікавий шаблон, кожен парний рядок трикутника Паскаля дорівнює нулю, якщо взяти середній елемент, потім відняти цілі наступні біля центрального, тоді додати наступні цілі і т.д. Приклад, рядок 4 такий, 1 4 6 4 1, отже формула буде така 6 - (4+4) + (1+1) = 0, рядок 6 такий 1 6 15 20 15 6 1, тому маємо 20 - (15+15) + (6+6) - (1+1) = 0.
Діагоналі
Діагоналі трикутника Паскаля містять фігурні числа сімплексів:
- Діагоналі уздовж лівого і правого ребер містять лише 1-ці.
- Наступні діагоналі містять натуральні числа по порядку.
- Рухаючись далі, наступна пара діагоналей містить трикутні числа по порядку.
- Наступна пара діагоналей містить тетраедричні числа по порядку і наступна дає числа п'ятиклітинника.
Загальні шаблони і властивості
- Шаблон отриманий фарбуванням лише непарних чисел у трикутнику Паскаля дуже нагадує фрактал відомий як трикутник Серпінського. Ця схожість стає все більш точною з додаванням нових рядків; при переході до границі, коли кількість рядків наближається до нескінченності, результовний шаблон є трикутником Серпінського.[5] Загальніше, числа можна розфарбовувати різноманітно, відповідно до того чи діляться вони на 3, 4 і т.д.; це дає подібні шаблони.
- Якщо рядки трикутника Паскаля вирівняти по лівому боку, тоді діагональні смуги (виділені кольором) сумуються у числа Фібоначчі.
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1
Біноміальні коефіцієнти
Трикутник Паскаля визначає коефіцієнти, що виникають при біноміальному розкладі. Наприклад:
- (a + b)2 = a2 + 2ab + b2 = 1a2b0 + 2a1b1 + 1a0b2.
Звернемо увагу, що утворені коефіцієнти - це числа в другому рядку трикутника Паскаля. Зазвичай, коли ми підносимо до цілого додатнього степеня n поліном вигляду (a + b) ми маємо:
- (a + b)n = c0an + c1an−1b + c2an−2b2 + ... + cn−1abn−1 + cnbn,
де коефіцієнти ci - це числа в n-му рядку трикутника Паскаля. Іншими словами: Можна побачити, що ми отримали біноміальну теорему. Звернемо увагу, що вся діагональ трикутника справа відповідає коефіцієнту перед bn, наступна діагональ відповідає коефіцієнту перед abn−1 і так далі. Для того щоб побачити, як біноміальна теорема безпосередньо відноситься до трикутника Паскаля розглянемо як рахуються коефіцієнти перед елементом (a + 1)n (де b = 1 ).
Розглянемо:
Ці дві суми можуть бути записані наступним чином:
Тепер ми маємо вираз для многочленів вигляду (a + 1)n+1 в термінах коефіцієнтів для (a + 1)n.Це і є те, що нам потрібно.
Нагадаємо, що всі числа на діагоналі, що йдуть від верхнього лівого до нижнього правого відповідають коефіцієнтам біля bn. Звідси маємо, що для того щоб знайти будь-який не нульовий або (n+1) коефіцієнт необхідно просумувати елементи які знаходяться у рядку вище зліва та справа. Це основне правило побудови трикутника Паскаля. Цікавим є те, що якщо ми візьмемо a та b рівними одиниці, то (1 + 1)n = 2n. Звідси маємо:
Іншими словами сума елементів в n-му рядку трикутника Паскаля дорівнює
Див. також
Примітки
- Brothers, H. J. (2012). Finding e in Pascal’s triangle. Mathematics Magazine 85: 51. doi:10.4169/math.mag.85.1.51..
- Brothers, H. J. (2012). Pascal's triangle: The hidden stor-e. The Mathematical Gazette 96: 145–148..
- Fine, N. J. (1947). Binomial coefficients modulo a prime. American Mathematical Monthly 54: 589–592. MR 0023257. doi:10.2307/2304500.. Дивись зокрему Теорему 2, яка дає узагальнення для всіх простих модулів.
- Hinz, Andreas M. (1992). Pascal's triangle and the Tower of Hanoi. The American Mathematical Monthly 99 (6): 538–544. MR 1166003. doi:10.2307/2324061.. Hinz приписує це спостереження книзі 1891 року Франсуа Едуард Анатоль Люка, Théorie des nombres (p. 420).
- Wolfram, S. (1984). Computation Theory of Cellular Automata. Comm. Math. Phys. 96: 15–57. Bibcode:1984CMaPh..96...15W. doi:10.1007/BF01217347.
Посилання
- Weisstein, Eric W. Трикутник Паскаля(англ.) на сайті Wolfram MathWorld.