Умовна збіжність

Ряд називається умовно збіжним, якщо він є збіжним, але не є абсолютно збіжним, тобто сума існує (і є скінченною), але .

Приклади

Прості приклади рядів, що умовно збігаються, дає ознака збіжності Лейбніца: це знакопереміжнні ряди які складаються з членів, що спадають за абсолютною величиною та прямують до нуля. Наприклад, ряд

є збіжним лише умовно, оскільки ряд із його абсолютних величин — гармонічний ряд — є розбіжним.

Властивості

  • Якщо ряд є умовно збіжним, то ряди, складені з його додатних і від'ємних членів є розбіжними.
  • Шляхом зміни порядку членів умовно збіжного ряду, можна одержати ряд, що збігається до будь-якої наперед заданої суми чи є розбіжним (теорема Рімана).
  • При почленному множенні двох умовно збіжних рядів, результат може бути розбіжним рядом.

Варіації і узагальнення

Див. також

Джерела

Посилання

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.