4-тензор
4-тензор — математичний об'єкт, який використовується для опису поля в релятивістській фізиці, тензор, визначений у чотиривимірному просторі-часі, повороти системи відліку в якому включають як звичні повороти тривимірного простору, так і перехід між системами відліку, які рухаються з різними швидкостями одна щодо іншої.
У загальному випадку 4-тензор є об'єктом із набором індексів:
При зміні системи відліку компоненти цього об'єкта перетворюються за законом[1]
- ,
де — матриця повороту, — обернена їй.
Верхні індекси називаються контраваріантними, нижні — коваріантними. Сумарне число індексів задає ранг тензора. 4-вектор є 4-тензором першого рангу.
Зазвичай у фізиці тензори однакової природи з різним числом коваріантних і контраваріантних індексів вважаються спорідненими (дуальними). Опускання чи піднімання індекса здійснюється за допомогою метричного тензора , наприклад для 4-тензора другого рангу
Приклади
Рівняння теорії відносності особливо зручно записувати, використовуючи 4-вектори й 4-тензори. Головною перевагою такого запису є те, що в цій формі рівняння автоматично Лоренц-інваріантні, тобто не змінюються при переході від однієї інерційної системи координат до іншої.
Тензор електромагнітного поля
Відповідний 4-тензор існує також і для опису електромагнітного поля. Це 4-тензор другого рангу. При його використанні основні рівняння для електромагнітного поля: рівняння Максвела й рівняння руху зарядженої частки в полі мають особливо просту й елегантну форму.
Визначення через тривимірні вектори
4-тензор визначається через звичайні тривимірні складові векторів напруженості так:
Перша форма — це коваріантний тензор, друга форма — контраваріантний тензор.
Сила Лоренца
Записане у 4-векторній формі рівняння руху зарядженої частки в електромагнітному полі набирає вигляду
- ,
де — 4-швидкість, q — електричний заряд частки, c — швидкість світла, m — маса спокою. Права частина цього рівняння це сила Лоренца.
Тривимірні тензори всередині чотиривимірних
Заміна просторових координат
Якщо робити обчислення компонент тензора в довільній рухомій системі координат, про яку було сказано в попередньому пункті, то важко буде порівнювати результати з експериментом, адже зручно розглядати лише інерційні системи координат, або близькі до інерційних (згідно з принципом еквівалентності гравітація еквівалентна силам інерції, тому в умовах сильного гравітаційного поля глобальної інерційної системи не існує).
У цій приблизно інерційній системі координат вісь часу сприймається окремо від простору, і ми можемо розглядати такі заміни координат (наприклад перехід від прямокутної декартової у сферичну систему координат), де час залишається незмінним, а просторові координати однієї системи виражаються через просторові координати іншої, і не залежать від часу:
матриці переходу між такими системами координат мають блочно-діагональний вигляд, а саме:
дійсно, із першого рівняння (4) маємо:
а з решти трьох рівнянь (4) маємо:
Такі ж міркування справедливі і для оберненої матриці , якщо врахувати, що система рівнянь, обернена до (4) має точно такий самий вигляд.
Поділ компонент чотиривимірних тензорів на групи
Розглянемо для прикладу тензор третього рангу . Поглянемо, як змінюється його нульова компонента при заміні просторових координат (4):
в цих перетвореннях ми врахували спочатку формулу (8) (при ) чим відсіяли нульові доданки, а потім фомулу (6).
Як бачимо з формули (9), нульова компонента довільного тензора залишається незмінною при перетвореннях (4), тобто є тривимірним скаляром. Тепер звернемося до компонент тензора з одним "просторовим" індексом :
тобто ця сукупність компонент 4-тензора поводиться як тривимірний вектор. Також тривимірним вектором буде , цей вектор може відрізнятися від щойно розглянутого, якщо 4-тензор був несиметричний по останніх двох індексах. Аналогічно маємо, що є просторовим тензором другого рангу, а - просторовим тензором третього рангу.
Треба зазначити, що можна виділяти тривимірні тензори як з коваріантних, так і з контраваріантних компонент 4-тензора. Результат ми одержимо різний. Чому це так, стане ясно після розгляду метрики простору-часу і деяких простих геометричних міркувань.
Просторові компоненти метричного тензора
Розглянемо компоненти метричного тензора . Згідно з попереднім пунктом, з цих 16-ти компонент можна виділити один тривимірний скаляр , один тривимірний вектор та один тривимірний симетричний тензор, який ми візьмемо зі знаком мінус: . Тоді матриця метричного тензора простору-часу запишеться так:
Вияснимо фізичний зміст тривимірного тензора . Для цього розглянемо тривимірний підпростір (в 4-вимірному просторі-часі) у фіксований момент часу . Цей підпростір є деякою (в загальному випадку кривою) гіперповерхнею 4-вимірного простору. Квадрат відстані між двома сусідніми точками цієї гіперповерхні () є додатня величина, що дорівнює взятому зі знаком мінус просторво-часовому інтервалу:
Як видно з останньої формули, є тривимірним метричним тензором.
Скаляр очевидно задає масштаб часу (спільний для всіх систем координат, які пов'язані з цими перетвореннями (4)). Вектор є мірою неортогональності вибраної осі часу щодо просторових координат. Це проявляється в тому, що обчислення координати швидкості світла дає різний результат в напрямку вектора і в протилежному напрямку. А саме, розглянемо дві близькі точки простору-часу, які належать траєкторії світла. Просторово-часовий інтервал між цими точками дорівнює нулю:
Позначимо компоненти швидкості світла , і поділимо (13) на . Останній доданок (13) дасть очевидно квадрат швидкості світла (згортка вектора з метричним тензором), а другий доданок - скалярний добуток швидкості світла на вектор . Маємо:
Зробивши заміну просторових координат, направимо вісь абсцис вздовж вектора і перейдемо до проекції на цю вісь, яка може бути додатньою або від'ємною. Для знаходження проекції маємо квадратне рівняння:
звідки маємо два розвязки для руху світла в протилежних напрямках:
Модулі цих величин різні, якщо .
Цікаво також поглянути на викривлений фізичний простір-час, аналогічно до того, як це робится в диференціальній геометрії, уявивши його вміщеним у гіпотетичний плоский псевдоевклідовий простір достатньо великої розмірності . Радіус-вектор в цьому охоплюючому просторі позначимо . Тоді фізичний простір-час задається параметрично:
а тривимірний простір всередині 4-вимірного одержується поклавши в (17) . Тобто маємо такий тривимірний многовид, залежний від трьох параметрів:
Координатні (N-вимірні!) вектори в обох випадках даються формулами:
ці величини, очевидно, збігаються при просторових значеннях індекса (). Метричний тензор обчислюється через псевдоевклідовий скалярний добуток цих векторів:
Просторові компоненти 4-вектора
Образ контраваріантного 4-вектора в охоплюючому псевдоевклідовому просторі дорівнює:
Якщо в цьому векторі ми виділимо просторову частину , то її образом буде інший вектор охоплюючого простору:
який очевидно є (неортогональною) проекцією вектора на тривимірний підпростір паралельно осі часу .
Розглянемо тепер коваріантні компоненти цього самого вектора . Ці компоненти є коефіцієнтами при розкладанні вектора по дуальному базису :
Перший доданок у формулі (24) ортогональний до кожного з трьох векторів , а тому відкиднувши його, ми здіснимо ортогональну проекцію вектора на тривимірну гіперповерхню.
Диференціювання
Найпростіше обчислюються тривимірні символи Крістофеля першого роду (з усіма нижніми індексами), оскільки згідно з формулою (11) просторові компоненти чотиривимірного метричного тензора дорівнюють зі знаком мінус компонентам тривимірного метричного тензора :
Вже для символів Крістофеля другого роду:
співвідношення між тривимірними і чотиривимірними величинами виявляється набагато складнішим, оскільки обернена до (11) матриця має такий доволі складний вигляд:
В цій формулі позначено: - тривимірна матриця, обернена до ; - контраваріантні компоненти тривимірного вектора ; і коефіцієнт
Також, в загальному випадку, складні вирази одержуються між тензорами кривини і лапласіанами (операторами Лапласа — Бельтрамі). Але у випадку плоского простору Мінковського ми маємо просту формулу для лапласіанів. Лапласіан чотиривимірного простору, який називається оператором Даламбера і позначається квадратиком , дорівнює:
де через дельту позначено лапласіан тривимірного простору.
Примітки
- Тут, як заведено в теорії відносності, знак суми опускається — повторення індекса внизу і вгорі означає підсумовування
- Формули на цій сторінці записані у системі одиниць СГСГ.