Експоненційний об'єкт
Експоненційний об'єкт — теоретико категорний аналог множини функцій у теорія множин. Категорії, в яких існують скінченні границі і експоненціали, називаються декартово замкнутими.
Означення
Нехай в категорії існують бінарні добутки. Тоді експоненціал за означенням є універсальним морфізмом з функтора у . (Функтор з у відображає об'єкт в і морфізми у ).
Іншими словами експоненціал об'єктів і категорії є об'єктом, разом з морфізмом , що називається відображенням оцінки такими, що для будь-якого об'єкта і морфізма існує єдиний морфізм , для якого діаграма нижче є комутативною:
Якщо експоненціал існує для всіх у , то функтор, що відправляє у є правим спряженим до . У цьому випадку існує натуральна бієкція:
- .
Приклади
- У категорії множин експоненціал це множина всіх функцій з у . Для будь-якого відображення відображення задається як:
- .
- У категорії топологічних просторів експоненціал існує, якщо — локально компактний гаусдорфів простір. В цьому випадку - множина неперервних функцій з у з компактно-відкритою топологією. Якщо не є локально компактним гаусдорфовим простором, то експоненціал може не існувати (простір буде існувати, але відображення може не бути неперервним). З цієї причини категорія топологічних просторів не є декартово замкнутою.
Література
- Adámek, Jiří; Horst Herrlich; George Strecker (2006) [1990]. Abstract and Concrete Categories (The Joy of Cats). John Wiley & Sons.
- Awodey, Steve (2010). Chapter 6: Exponentials. Category theory. Oxford New York: Oxford University Press. ISBN 978-0199237180.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.