Спряжений оператор

Спря́жений оператор — одне з важливих понять в функціональному аналізі.

Означення

Нехай  лінійний неперервний оператор, що відображає нормований простір в нормований простір . Тоді спряженим оператором оператору називається таке відображення спряжених просторів, що діє згідно з правилом:

Рівності можна надати більш виразної форми, якщо значення функціонала на елементі записувати у вигляді . Тоді спряжений оператор визначається рівністю

Гільбертів простір

Відмітимо, що, згідно з теоремою Ріса про загальний вигляд лінійного неперервного функціоналу, заданого на гільбертовому просторі , оператор , спряжений до лінійного неперервного оператора , визначається за допомогою рівності

що збігається в такому випадку з рівністю, якою визначається спряжений оператор.

В гільбертовому просторі найбільш цікавими є ті оператори, що рівні своїм спряженим: , так звані самоспряжені оператори. Таким чином, оператор називається самоспряженим, якщо для довільних елементів і гільбертового простору . Для самоспряженого оператора справедлива рівність .

Джерела

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.