Трійковий код Голея
Трійкові коди Голея, в теорії кодування — це два тісно пов'язаних коди з корекцією помилок. Загалом, код відомий за назвою «трійковий код Голея» — це код , який, по суті є лінійним кодом у трійковому алфавіті; відносна відстань коду настільки велика, настільки це можливо для трійкового коду, і, виходячи з цього, трійковий код Голея — це досконалий код.
Розширений трійковий код Голея — це [12, 6, 6] лінійний код, отриманий шляхом додавання контрольного числа з нульовою сумою до коду [11, 6, 5]. У скінченній теорії груп розширений трійковий код Голея іноді називають трійковим кодом Голея.
Властивості
Трійковий код Голея
Трійковий код Голея складається з 36 = 729 кодових слів. Ось його матриця перевірки на парність:
Будь-які два кодових слова мають хоча б 5 відмінностей. Кожне трійкове слово довжиною в 11, має відстань Геммінга не більше 2 з одного кодового слова. Код також може конструюватися як квадратний код залишку довжиною в 11 у скінченному полі F3.
Використаний при ставках на футбол в 11 іграх, трійковий код Голея відповідає 729 ставкам і гарантує саме одну ставку з якнайбільше двома неправильними результатами.
Набір кодових слів з вагою Геммінга 5 — це 3-(11,5,4) блок-дизайн.
Розширений трійковий код Голея
Повний ваговий лічильник розширеного трійкового коду — це:
Автоморфізм груп розширеного трійкового коду Голея — це 2.M12, де M12 являє собою групу Метью M12.
Розширений код Голлея може бути збудований як пропуск рядків матриці Адамара 12-го порядку у полі F3.
Розглядаючи всі кодові слова розширеного коду, які мають шість ненульових цифр, ми помітимо, що Набори позицій, в яких зустрічаються ці ненульові цифри становлять системи Штейнера S (5, 6, 12).
Історія
Трійковий код Голея був винайдений Марселем Голеєм 1949 року. Але незалежно він був відкритий двома роками раніше фінським прихильником ставок на футбол Джуані Віртакаліо, який опублікував статтю в 1947 році у 27, 28 і 33 виданні футбольного журналу Veikkaaja. (Barg, 1993, p.25)
Див. також
Примітки
- Barg, Alexander (1993). At the dawn of the theory of codes. en:The Mathematical Intelligencer 15 (1): 20–26. ISSN 0343-6993. MR 1199273. doi:10.1007/BF03025254.
- M.J.E. Golay, Notes on digital coding, Proceedings of the I.R.E. 37 (1949) 657
- I.F. Blake (ed.), Algebraic Coding Theory: History and Development, Dowden, Hutchinson & Ross, Stroudsburg 1973
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer, New York, Berlin, Heidelberg, 1988.
- Robert L. Griess, Twelve Sporadic Groups, Springer, 1998.
- G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering Codes, Elsevier (1997) ISBN 0-444-82511-8
- Th. M. Thompson, From Error Correcting Codes through Sphere Packings to Simple Groups, The Mathematical Association of America 1983, ISBN 0-88385-037-0