Характеристичний поліном

Характеристичний поліном квадратної матриці розміру — це многочлен степеня від змінної який дорівнює

, де одинична матриця порядку .

Мотивація

Скаляр є власним значенням матриці A для власного вектора тоді і тільки тоді коли:

чи

Оскільки то повинна бути виродженою, а отже:

.

Властивості

  • Неважко переконатися, що
  • Для матриць елементи яких комутативними є -алгебрами, характеристичний многочлен можна записати як:
    де — многочлени із раціональними коефіцієнтами, що описують залежність елементарних симетричних многочленів від степеневих симетричних многочленів у тотожностях Ньютона (тобто )
  • Характеристичні поліноми подібних матриць збігаються:
  • Характеристичні поліноми добутку квадратних матриць не залежать від порядку множників:

Характеристичне рівняння

Характеристичним рівнянням (або секулярним рівнянням) називається рівняння

Корені характеристичного полінома називаються характеристичними числами матриці

Тільки вони є власними значеннями матриці

Див. також

Джерела

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.