Інтегральна показникова функція
Не плутати з іншими інтегралами експоненціальних функцій.
Будь-ласка встановіть цей шаблон на сторінці обговорення, а не в цій статті! |
У математиці експоненціальний інтеграл Ei — це спеціальна функція на комплексній площині. Він визначається як певний визначений інтеграл від відношення експоненціальної функції та її аргументу.
Означення
Для дійсних ненульових значень експоненціальний інтеграл Ei() визначається як
.
Алгоритм Ріша показує, що Ei не є елементарною функцією. Вищенаведене означення може бути використане для додатних значень , але інтеграл слід розуміти у термінах головного значення за Коші через особливість підінтегральної функції в нулі.
Для комплексних значень аргументу означення стає неоднозначним через точки розгалуження у 0 та [1]. Замість Ei використовується наступне позначення[1],
(зауважимо, що для додатних значень : ).
Загалом, розгалуження здійснюється по від'ємній дійсній осі, і можна визначити за допомогою аналітичного продовження на комплексну площину.
Для додатних значень дійсної частини це можна записати як[2]
Поведінка біля точки розгалуження визначається наступним співвідношенням[3]:
Властивості
Декілька властивостей експоненціального інтегралу, що наведені нижче, у деяких випадках дозволяють уникнути його явного оцінювання через вищенаведене означення.
Збіжний ряд
Для дійсних або комплексних аргументів, які знаходяться поза від'ємною дійсною віссю, може бути виражений як[4]
де — константа Ейлера–Маскероні. Ряд збігається для всіх комплексних , і ми беремо звичайне значення комплексного логарифму, який має розгалуження вздовж від'ємної дійсної осі.
Ця формула може бути використана для обчислення в операціях з плаваючою комою для дійсного між та . Для результат неточний через втрату значущості.
Ряд який збігається швидше знайшов Рамануджан:
Даний збіжний ряд може використовуватися для отримання асимптотичних оцінок, наприклад,
для .
Асимптотичний (розбіжний) ряд
На жаль, збіжність рядів що наведені вище є повільною для великих за модулем аргументів. Наприклад, для потрібно більше 40 членів, щоб для отримати у відповіді перші три правильні цифри.[5] Однак існує апроксимація розбіжним рядом, який можна отримати інтегруючи частинами:[6]
з похибкою порядку і яка може використовуватися при великих значень . Відносна похибка такої апроксимації приблизно зображена на рисунку (для різних значень кількості доданків у сумі).
Експоненціальна та логарифмічна поведінка: двостороння оцінка
З двох рядів, які показані в попередніх підрозділах випливає, що поводить себе як від'ємна експонента для великих значень аргументу, і як логарифм — для малих значень. Для додатних дійсних значень аргументу можна обмежити елементарними функціями наступним чином[7]:
На рисунку ліва частина цієї нерівності зображена синім кольором, центральна частина позначена чорним кольором, а права частина нерівності — червоним.
Означення Ein
Функції і можна записати простіше, використовуючи цілу функцію [8], визначену як
(зауважте, що це лише знакозмінний ряд у наведеному вище означенні ). Тоді
Зв'язок з іншими функціями
Диференціальне рівняння Куммера
як правило, розв'язується за допомогою вироджених гіпергеометричних функцій та . Але при та рівняння набуває вигляду
і для всіх
.
Другий розв'язок подається через . А саме,
.
Інший зв'язок з виродженими гіпергеометричними функціями полягає в тому, що — це добуток експоненціальної функції та :
.
Експоненційний інтеграл тісно пов'язаний з логарифмічною інтегральною функцією за допомогою формули
для ненульових дійсних значень .
Експоненційний інтеграл можна також узагальнити до функції
,
яку можна записати як частковий випадок неповної гамма-функції [9]:
.
Таку узагальнену форму іноді називають функцією Мізра[10], , що визначається як
.
З використанням логарифму визначає узагальнену інтегро-експоненціальну функцію[11]
.
Невизначений інтеграл
за формою схожий на звичайну твірну функцію для , кількість дільників числа :
.
Похідні
Похідні узагальнених функцій можна обчислювати за формулою[12]:
.
Зауважимо, що функція — це просто [13], і таким чином таке рекурсивне співвідношення досить зручне.
Експоненційний інтеграл уявного аргументу
Якщо є уявним та має невід'ємну дійсну частину, то можна використовувати формулу
для співвідношення з тригонометричними інтегралами та :
.
Дійсні та уявні частини функції зображені на рисунку.
Застосування
- Залежність теплообміну від часу.
- Нерівноважний потік ґрунтових вод у рівнянні Тейса (функція свердловини).
- Переміщення радіації у міжзоряному просторі та земній атмосфері.
- Рівняння радіальної дифузії для перехідного або нестаціонарного потоку з лінійними джерелами та стоками.
- Розв'язок рівняння переміщення нейтронів у спрощеній 1-D геометрії[17].
Див. також
- Інтеграл Гудвіна–Статона
- Функції Біклі–Нейлора
Виноски
- Abramowitz and Stegun, p. 228, 5.1.1
- Abramowitz and Stegun, p. 228, 5.1.4 with n = 1
- Abramowitz and Stegun, p. 228, 5.1.7
- Abramowitz and Stegun, p. 229, 5.1.11
- Bleistein and Handelsman, p. 2
- Bleistein and Handelsman, p. 3
- Abramowitz and Stegun, p. 229, 5.1.20
- Abramowitz and Stegun, p. 228, see footnote 3.
- Abramowitz and Stegun, p. 230, 5.1.45
- After Misra (1940), p.~178
- Milgram (1985)
- Abramowitz and Stegun, p. 230, 5.1.26
- Abramowitz and Stegun, p. 229, 5.1.24
- Giao, Pham Huy (2003-05-01). ``Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution. Ground Water. 41 (3): 387–390
- Tseng, Peng-Hsiang; Lee, Tien-Chang (1998-02-26). ``Numerical evaluation of exponential integral: Theis well function approximation. Journal of Hydrology. 205 (1–2): 38–51.
- Barry, D. A; Parlange, J. -Y; Li, L (2000-01-31). ``Approximation for the exponential integral (Theis well function). Journal of Hydrology. 227 (1–4): 287–291.
- George I. Bell; Samuel Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinhold Com\-pany.
Джерела
- Abramowitz, Milton; Irene Stegun (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Abramowitz and Stegun. New York: Dover. ISBN 978-0-486-61272-0., Chapter 5.
- Bender, Carl M.; Steven A. Orszag (1978). Advanced mathematical methods for scientists and engineers. McGraw–Hill. ISBN 978-0-07-004452-4.
- Bleistein, Norman; Richard A. Handelsman (1986). Asymptotic Expansions of Integrals. Dover. ISBN 978-0-486-65082-1.
- Busbridge, Ida W. (1950). On the integro-exponential function and the evaluation of some integrals involving it. Quart. J. Math. (Oxford) 1 (1): 176–184. Bibcode:1950QJMat...1..176B. doi:10.1093/qmath/1.1.176.
- Stankiewicz, A. (1968). Tables of the integro-exponential functions. Acta Astronomica 18: 289. Bibcode:1968AcA....18..289S.
- Sharma, R. R.; Zohuri, Bahman (1977). A general method for an accurate evaluation of exponential integrals E1(x), x>0. J. Comput. Phys. 25 (2): 199–204. Bibcode:1977JCoPh..25..199S. doi:10.1016/0021-9991(77)90022-5.
- Kölbig, K. S. (1983). On the integral exp(−μt)tν−1logmt dt. Math. Comput. 41 (163): 171–182. doi:10.1090/S0025-5718-1983-0701632-1.
- Milgram, M. S. (1985). The generalized integro-exponential function. Mathematics of Computation 44 (170): 443–458. JSTOR 2007964. MR 0777276. doi:10.1090/S0025-5718-1985-0777276-4.
- Misra, Rama Dhar; Born, M. (1940). On the Stability of Crystal Lattices. II. Mathematical Proceedings of the Cambridge Philosophical Society 36 (2): 173. Bibcode:1940PCPS...36..173M. doi:10.1017/S030500410001714X.
- Chiccoli, C.; Lorenzutta, S.; Maino, G. (1988). On the evaluation of generalized exponential integrals Eν(x). J. Comput. Phys. 78 (2): 278–287. Bibcode:1988JCoPh..78..278C. doi:10.1016/0021-9991(88)90050-2.
- Chiccoli, C.; Lorenzutta, S.; Maino, G. (1990). Recent results for generalized exponential integrals. Computer Math. Applic. 19 (5): 21–29. doi:10.1016/0898-1221(90)90098-5.
- MacLeod, Allan J. (2002). The efficient computation of some generalised exponential integrals. J. Comput. Appl. Math. 148 (2): 363–374. Bibcode:2002JCoAm.138..363M. doi:10.1016/S0377-0427(02)00556-3.
Зовнішні посилання
- Hazewinkel, Michiel, ред. (2001). Integral exponential function. Encyclopedia of Mathematics. Springer. ISBN 978-1-55608-010-4.
- NIST documentation on the Generalized Exponential Integral
- Weisstein, Eric W. Exponential Integral(англ.) на сайті Wolfram MathWorld.
- Weisstein, Eric W. En-Function(англ.) на сайті Wolfram MathWorld.
- Exponential, Logarithmic, Sine, and Cosine Integrals in DLMF.