Інтеграл

Інтегра́л — центральне поняття інтегрального числення, узагальнення поняття суми для функції, визначеній на континуумі. Виникає під час розв'язування задач про знаходження площі кривої, знаходження пройденого шляху при нерівномірному русі та інших подібних задачах.

Визначений інтеграл дорівнює площі криволінійної фігури, обмеженої кривою

Ви́значений інтегра́л — в математичному аналізі це інтеграл функції з вказаною областю інтегрування. Визначений інтеграл є неперервним функціоналом, лінійним по підінтегральних функціях і адитивним по області інтегрування. У найпростішому випадку область інтегрування — це відрізок числової осі. Геометричний зміст визначеного інтеграла — це площа криволінійної фігури (криволінійної трапеції), обмеженої віссю абсцис, двома вертикалями на краях відрізка і кривою графіка функції.

Подальші узагальнення поняття дозволяють розширити його на кратні, поверхневі, об'ємні інтеграли, а також на інтеграли на об'єктах ширшої природи з мірою. Існує кілька різновидів визначених інтегралів: інтеграл Рімана, інтеграл Лебега, інтеграл Стілтьєса тощо.

Невизначений інтеграл

Нехай дано функцію  — функцію дійсної змінної. Неви́значеним інтегра́лом функції , або первісною, називають таку функцію , похідна якої дорівнює , тобто, . Позначається це так: . Слід зазначити, що первісна існує не для будь-якої функції. Легко бачити, що первісна існує для будь-якої неперервної функції. Оскільки похідні двох функцій, які відрізняються лише на сталу, збігаються, при знаходженні невизначеного інтегралу включають невизначену сталу наприклад

Інтегрування

Що таке інтеграл (анімація)

Процес знаходження інтеграла називається інтегрува́нням. Цей процес зазвичай використовується при знаходженні таких величин як площа, об'єм, маса, зсув тощо, коли задана швидкість або розподіл змін цієї величини по відношенню до деякої іншої величини (розташування, час тощо).

Існує декілька різних визначень операції інтегрування, що відрізняються в технічних деталях. Проте всі вони сумісні, тобто будь-які два способи інтегрування, якщо їх можна застосувати до даної функції, дадуть той самий результат.

Інтегрування — операція, обернена до диференціювання, див. основна теорема аналізу. В результаті невизначеного інтегрування виходить функція, яка називається первісною. Першим інтегралом є число (або, принаймні, не залежна від змінної інтегрування частина).

Історія

Інтеграл в давнину

Інтеграція простежується ще в давньому Єгипті, приблизно у 1800 до н.е., Московський математичний папірус демонструє знання формули об'єму січної піраміди. Першим відомим методом для розрахунку інтегралів є метод вичерпування Евдокса (приблизно 370 до н. е.), який намагався знайти площі і об'єми, розриваючи їх на нескінченну безліч частин, для яких площа або об'єм вже відомий. Цей метод був підхоплений і розвинутий Архімедом, і використовувався для розрахунку площ парабол і наближеного розрахунку площі круга. Аналогічні методи були розроблені незалежно в Китаї в 3-м столітті н.е Лю Хуейєм, який використовував їх для знаходження площі круга. Цей метод був згодом використаний Цзу Чунчжи для знаходження об'єму сфери.

Ньютон і Лейбніц

Основне досягнення в області інтегрування відбулося в 17-му столітті із відкриттям фундаментальної теореми числення (відомої як формула Ньютона — Лейбніца) Ньютоном і Ляйбніцом, незалежно один від одного. Теорема встановлює зв'язок між інтегруванням і диференціюванням. Зокрема, фундаментальна теорема числення дозволила вирішувати більш широкий клас задач. Ньютон і Лейбніц створили комплексну математичну теорію, що є не менш важливим. Ця теорія має назву - числення нескінченно малих величин, і дозволила здійснювати точний аналіз неперервних функцій. Ці основоположні роботи зрештою стали сучасним численням, в якому була використана нотація для інтегралів, що на пряму спирається на роботи Лейбніца.

Знак інтеграла (∫), був вперше використаний Ляйбніцом наприкінці XVII століття. Цей символ утворився з букви ſ («довга s») — скорочення слова лат. ſumma (summa, сума).

Формальні визначення

Приклад інтеграла із нерівномирним розділенням (найбільша ділянка відмічена червоним)
Збіжність ріманової суми

Існує багато способів формального визначення інтеграла, і не всі з них є еквівалентними один одному. Існують відмінності в основному пов'язані із різними особливими випадками, які можуть бути не інтегровані в рамках якихось визначень. Найбільш поширеними і загальними визначеннями інтеграла є ітеграл Рімана і інтеграл Лебега.

Інтеграл Рімана

Інтеграл Рімана — найпростіший із визначених інтегралів, є границею інтегральної суми. Для функції однієї змінної , визначеній на відрізку та певного розбиття цього відрізку на відрізки інтегральна сума визнається як

де  — будь-яка точка з відрізку.

Якщо існує границя таких сум при прямуванні найбільшої довжини відрізку до нуля, то функція називається інтегрованою, а границя інтегральної суми називається інтегралом Рімана функції на відрізку і позначається

.

Інтеграл Рімана можна також визначити як границю сум Дарбу.

Інші визначення інтегралу розширюють клас інтегрованих функцій, включаючи в них функції, для яких границі інтегральних сум не існує.

Властивості

Лінійний функціонал

На певній області визначення інтеграл є лінійним функціоналом на просторі функцій:

тут і  — функції,  — число.

Адитивність по області

Якщо області та не перетинаються (або «перетинаються в точці»), інтеграл по об'єднаній області є сумою інтегралів по та :

Монотонність

Якщо незростаюча послідовність (тобто ) функцій, які збігаються до нуля для всіх на області інтегрування, тоді .

Нормованість

Інтеграл сталої функції-константи розраховується «як площа прямокутника»

де  — це «міра» області інтегрування, в простішому випадку просто довжина інтервалу, або ж «площа» області інтегрування.

Головна теорема інтегрального числення

Якщо у функції на відрізку існує первісна , то

Ця формула називається формулою Ньютона — Лейбніца, або основною формулою інтегрального числення. Вона дає практичний і зручний спосіб обчислення визначеного інтеграла за значеннями первісної на кінцях відрізку інтегрування. Багатовимірні інтеграли обчислюються за допомогою теореми про зведення кратних інтегралів до повторного.

Узагальнення визначеного інтеграла

Невласний інтеграл

Інтеграл «першого роду» на необмеженій області визначення
Інтеграл «другого роду» від необмеженої функції

Невласний інтеграл є розширенням поняття визначеного інтегралу; він дозволяє в деяких випадках обраховувати «інтеграл на нескінченості» або «інтеграл від необмеженої функції». В математичному аналізі невласним інтегралом називають границю послідовності визначених інтегралів, коли інтервал інтегрування збільшується до нескінченості, або коли інтервал наближається до особливої точки інтегрованої функції, де та йде у нескінченість.

Невласним інтегралом «першого роду» називається границя , якщо вона існує.

Невласний інтеграл «другого роду» дозволяє в деяких випадках визначити «інтеграл від функції, необмеженої на інтервалі». А саме, нехай функція визначена на , і для кожного малого існують інтеграли . Тоді якщо існує дійсна границя , то вона зветься невласним інтегралом «другого роду».

Кратний інтеграл

Подвійний інтеграл як об'єм під поверхнею z = x² − y². Прямокутний регіон у основі тіла є областю інтегрування, а поверхня графіка функції двох зміних буде інтегруватися

Кратний інтеграл або ж багатократний інтеграл степеня n, це визначений інтеграл по n змінних з функції n змінних:

.

Кратний інтеграл — це саме визначений інтеграл, при його обчисленні завжди виходить число

Окремі випадки багатократного інтеграла це:

  • подвійний інтеграл:
  • потрійний інтеграл:

Для геометричної інтерпретації розглянемо випадок . Нехай функція приймає в області тільки позитивні значення. Тоді подвійний інтеграл чисельно дорівнює об'єму вертикального циліндрового тіла, побудованого на основі і обмеженого зверху відповідним шматком поверхні .

Головним методом для розрахунку кратного інтеграла є зведення кратного інтеграла до повторних

Хай  — вимірна множина,  — також вимірна множина, визначена і інтегрована на . Тоді

.

Будь-який d-вимірний інтеграл можна звести до d одномірних.

Лінійний інтеграл

Поверхневий інтеграл

Ширші узагальнення

Інтеграл Лебега

Інтеграл Лебега — це узагальнення інтеграла Рімана на ширший клас функцій. Всі функції, визначені на скінченному відрізку числової прямої і інтегровні за Ріманом, є також інтегровні за Лебегом, причому в такому разі обидва інтеграли однакові. Однак, існує великий клас функцій, визначених на відрізку і інтегровних за Лебегом, але не інтегровних за Ріманом. Також інтеграл Лебега може застосовуватися до функцій, заданих на довільних множинах.

Ідея побудови інтеграла Лебега полягає в тому, що замість розбиття області визначення підінтегральної функції на частини і написання потім інтегральної суми із значень функції на цих частинах, на інтервали розбивають її область значень, а потім сумують з відповідними мірами міри прообразів цих інтервалів. Важливо зазначити, що побудова інтеграла Лебега спирається на теорію міри Лебега.

Як традиційний приклад розглянемо функцію Діріхле , задану на , де  борелівська σ-алгебра на , а  міра Лебега. Ця функція приймає значення в раціональних точках і в ірраціональних. Легко побачити, що не інтегровна в сенсі Рімана. Однак, вона є простою функцією на просторі зі скінченною мірою, бо приймає тільки два значення, а тому її інтеграл Лебега визначений і дорівнює:

Дійсно, міра відрізка дорівнює 1, і оскільки множина раціональних чисел зліченна, то його міра дорівнює 0, значить міра ірраціональних чисел дорівнює .

Інтеграл Даніелла

Одне з основних ускладнень у використанні традиційного інтеграла Лебега полягає в тому, що його застосування вимагає попередньої розробки відповідної теорії міри.

Існує інший підхід, викладений Даніеллем в 1918 році в його статті «Загальний вид інтеграла» («Annals of Mathematics», 19, 279), що не має цього недоліку і що має значні переваги при узагальненні на простори вищих розмірностей і подальших узагальненнях (наприклад, у формі інтеграла Стілтьєса).

Основна ідея полягає в аксіоматизуванні поняття інтеграла. Розглянемо сімейство обмежених дійснозначних функцій (названих елементарними функціями), визначених на множині , що задовольняє таким аксіомам:

1.  лінійний простір зі звичайними операціями додавання і скалярного множення.

2. : якщо функція належить , то її модуль також належить

Крім того, на просторі елементарних функцій визначається позитивно визначений неперервний лінійний функціонал , названий елементарний інтеграл.

  1. Лінійність: якщо h і k обидва належать H, і ,  — довільні дійсні числа, тоді .
  2. Невід'ємність: якщо , тоді .
  3. Неперервність: якщо незростаюча послідовність (тобто ) функцій з , які збігаються до нуля для всіх в , тоді .

Така побудова узагальненого інтеграла має деякі переваги перед методом Лебега, особливо у функціональному аналізі. Конструкції Лебега і Деніелла еквівалентні, якщо розглядати як елементарні ступінчасті функції, проте при узагальненні поняття інтеграла на складніші об'єкти (наприклад, лінійні функціонали) виникають істотні труднощі в побудові інтеграла за Лебегом. За Деніеллем інтеграл будується простіше.

Див. також

Література

Посилання

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.