Коваріація та кореляція

Математичні поняття коваріа́ції (англ. covariance) та кореля́ції (англ. correlation) у теорії ймовірностей та статистиці дуже схожі.[1][2] Обидва описують ступінь, до якого дві випадкові величини або набори випадкових величин схильні відхилятися від своїх математичних сподівань подібним чином.

Якщо X та Y — дві випадкові величини з середніми значеннями (математичними сподіваннями) μX та μY і стандартними відхиленнями σX та σY відповідно, то їх коваріація та кореляція такі:

коваріація
кореляція,

тож

де E — оператор математичного сподівання. Примітно, що кореляція безрозмірнісна, тоді як коваріація має одиниці, отримувані шляхом множення одиниць цих двох величин.

Якщо Y завжди набуває тих же значень, що й X, ми маємо коваріацію змінної з самою собою (тобто ), яку називають дисперсією й частіше позначують через , квадрат стандартного відхилення. Кореляція змінної з самою собою завжди 1 (крім виродженого випадку, коли ці дві дисперсії дорівнюють нулю, оскільки X завжди набуває одного й того ж єдиного значення, і в цьому випадку кореляції не існує, оскільки її обчислення включатиме ділення на 0). Загалом, кореляція між двома змінними дорівнює 1 (або 1), якщо одна з них завжди набуває значення, яке точно задається лінійною функцією іншої з відповідно додатним (або від'ємним) кутовим коефіцієнтом.

Хоча значення теоретичних коваріацій та кореляцій і пов’язано вищезазначеним чином, розподіли ймовірностей ви́біркових оцінок цих величин жодним простим чином не пов’язано, і в загальному випадку їх потрібно розглядати окремо.

Декілька випадкових величин

За будь-якої кількості випадкових величин, що перевищує 1, ці величини можливо об’єднати у випадковий вектор, чий i-й елемент є i-ю випадковою величиною. Тоді дисперсії та коваріації можливо помістити до коваріаційної матриці, в якій елемент (i, j) є коваріацією між i-ю та j-ю випадковими величинами. Аналогічно, кореляції можливо помістити до кореляційної матриці.

Аналіз часових рядів

У випадку часового ряду, що є стаціонарним у широкому сенсі, як середні значення, так і дисперсії є сталими в часі (E(Xn+m) = E(Xn) = μX та var(Xn+m) = var(Xn), і так само для змінної Y). У цьому випадку взаємна коваріація та взаємна кореляція є функціями часової різниці:

взаємна коваріація
взаємна кореляція

Якщо Y є тією же змінною, що й X, то наведені вище вирази називають автоковаріацією та автокореляцією:

автоковаріація
автокореляція

Примітки

  1. Weisstein, Eric W. Covariance(англ.) на сайті Wolfram MathWorld.
  2. Weisstein, Eric W. Statistical Correlation(англ.) на сайті Wolfram MathWorld.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.