Многочлени Бернуллі
У математиці, Многочлени Бернуллі — многочлени, названі на честь Якоба Бернуллі, що виникають при вивченні багатьох спеціальних функцій, зокрема ζ-функції Рімана і ζ-функції Гурвіца, також є окремим випадком послідовності Аппеля. На відміну від ортогональних многочленів, многочлени Бернуллі визначні тим, що число коренів в інтервалі не збільшується із зростанням степеня многочлена. При необмеженому збільшенні степеня, многочлени Бернуллі наближаються до тригонометричних функцій.
Визначення
Многочлени Бернуллі можна визначити різними способами. Вибір визначення залежить від зручності в тому або іншому випадку.
Представлення диференціальним оператором
Визначення за допомогою інтегрального оператора
Многочлени Бернуллі є єдиними многочленами, що задовольняють рівняння
Інтегральний оператор
для многочленів f, приймає ті ж значення, що й
Явний вигляд для найменших степенів
Многочленами Бернуллі для найменших степенів є:
Властивості
Диференціювання і інтегрування
- .
Невизначені інтеграли:
Визначені інтеграли:
Множення аргументу
- .
Сума аргументу
Симетрія
Ряд Фур'є
Ряди Фур'є для многочленів Бернуллі є також рядами Діріхле:
Цей розклад справедливий коли 0 ≤ x ≤ 1 для n ≥ 2 і у випадку 0 < x < 1 для n = 1.
Обертання
Посилання
- Kurtulan, Ali Burak "Bernoulli Polynomials and Their Applications"[недоступне посилання з липня 2019]
Література
- Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (1972) Dover, New York.
- Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3
- Hugh L. Montgomery; Robert C. Vaughan (2007). Multiplicative number theory I. Classical theory. Cambridge tracts in advanced mathematics. 97. Cambridge: Cambridge Univ. Press. pp. 495–519. ISBN 0-521-84903-9.