Множина Віталі

Множина́ Віта́лі — історично перший приклад множини, що не має міри Лебега (невимірна множина). Цей приклад опублікував 1905 року італійський математик Джузепе Віталі.

Історія

1902 року Анрі Лебег у своїх лекціях «Leçons sur l'intégration et la recherche des fonctions primitives», сформулював теорію міри і гадав, що вона може бути застосована до довільної обмеженої множини. Але поява контрприкладів розвіяла ці сподівання. Побудова таких невимірних множин завжди спирається на аксіому вибору.

Побудова

Введемо відношення еквівалентності на відрізку :

(дійсні числа еквівалентні, якщо їх різниця є раціональним числом).

Виберемо із кожного класу еквівалентності по одному елементу (тут ми користуємося аксіомою вибору), отримана множина буде невимірною.

Справді, якщо зсунути множину зліченну кількість разів на всі раціональні числа з відрізка , то об'єднання таких множин буде включати весь відрізок і саме буде включене у відрізок .

Припустимо, що множина має міру Лебега. Тоді можливі 2 випадки:

  • Міра дорівнює нулю. Тоді міра відрізка (як зліченного об'єднання множин міри нуль) теж дорівнює нулю, що суперечить визначенню міри.
  • Міра більша нуля. Тоді, аналогічно, міра відрізка буде нескінченною, що знову суперечить визначенню.

В обох випадках приходимо до суперечності. Отже, множина Віталі не має міри Лебега.

Джерела

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.