Математична модель

Математи́чна моде́ль — система математичних співвідношень, які описують досліджуваний процес або явище. Математична модель має важливе значення для таких наук, як: економіка, екологія, соціологія, фізика, хімія, механіка, інформатика, біологія та ін.

Загальний опис

При отриманні математичної моделі використовують загальні закони природознавства, спеціальні закони конкретних наук, результати пасивних та активних експериментів, імітаційне моделювання за допомогою обчислювальних машин. Математичні моделі дозволяють передбачити хід процесу, розрахувати цільову функцію (вихідні параметри процесу), керувати процесом, проектувати системи з бажаними характеристиками.

Для створення математичних моделей можна використовувати будь-які математичні засоби — мову диференційних або інтегральних рівнянь, теорії множин, абстрактної алгебри, математичну логіку, теорії ймовірностей, графи та інші. Процес створення математичної моделі називається математичним моделюванням. Це найзагальніший та найбільш використовуваний в науці, зокрема, в кібернетиці, метод досліджень.

Якщо відношення задаються аналітично, то їх можна розв'язати в замкнутому вигляді (явно) відносно шуканих змінних як функції від параметрів моделі, або в частково замкнутому вигляді (неявно), коли шукані змінні залежать від одного або багатьох параметрів моделі. До моделей цього класу належать диференціальні, інтегральні, різницеві рівняння, ймовірнісні моделі, моделі математичного програмування та інші.

Якщо не можна здобути точний розв'язок математичної моделі, використовуються чисельні (обчислювальні) методи або інші види моделювання.

У залежності від того, якими є параметри системи та зовнішні збурення математичної моделі можуть бути детермінованими та стохастичними. Останні мають особливо важливе значення при дослідженні і проектуванні великих систем зі складними зв'язками і властивостями, які важко врахувати. Математичний опис неперервного процесу (наприклад, диференційними рівняннями) являє собою неперервну математичну модель.

Якщо ж математична модель описує стан системи тільки для дискретних значень незалежної змінної і нехтує характером процесів, які протікають у проміжках між ними, то така модель є дискретною (тут важливим є вибір кроку дискретності, від якого залежить точність опису реального об'єкта його математичною моделлю). Якщо параметри об'єкта, для якого розробляють математичну модель, можна вважати незалежними від часу, то така система описується стаціонарною моделлю, характерна особливість якої — постійні коефіцієнти. У протилежному випадку математична модель є нестаціонарною.

При математичному моделюванні орієнтуються на моделі стандартного вигляду, які забезпечені відповідним математичним апаратом. Так фізичні процеси характеризуються просторово-часовими співвідношеннями і у загальному випадку описуються диференційними рівняннями у часткових похідних.

Важливим моментом структурування моделі є феноменологічний метод, коли субпроцеси можуть бути представлені окремими моделями, вихідні величини яких є вхідними для інших (наступних) субпроцесів. У цьому випадку математична модель складного процесу являє собою систему моделей (рівнянь), знайдених для кожного субпроцесу.

Для розробки математичних моделей широко використовується диференційне числення, теорія множин, матриці і графи, а також планування експерименту. Відповідно розрізняють теоретико-множинні, матричні, топологічні та поліномні математичні моделі.

Приклади математичних моделей

  • Модель Мальтуса — закон про пропорційну залежність між швидкістю росту і розміром популяції.
  • Система хижак-жертва (Вольтерри-Лотки) — показує залежність між чисельністю хижаків та жертв.
  • Модель оптимальної поведінки покупця — виражає вибір покупця між множиною продуктів при обмеженому бюджеті.
  • Модель Гарячого Всесвіту.

Значення в природничих науках

Математичні моделі мають велике значення в галузі природничих наук, зокрема, у фізиці . Фізичні теорії майже завжди виражають за допомогою математичних моделей.

Протягом всієї історії, були розроблені менш і більш точні математичні моделі. Закони Ньютона точно описали багато повсякденних явищ, але в певних межах ситуацію краще і правильніше описують теорія відносності і квантова механіка, проте вони не застосовуються до всіх ситуацій і потребують подальшого доопрацювання. Це потрібно, щоб отримати менш точні моделі у відповідних межах, наприклад, релятивістська механіка зводиться до механіки Ньютона на швидкостях набагато менших за швидкість світла. Квантова механіка зводиться до класичної фізики, коли квантові числа високі.

Вони є загальними для використання ідеалізованих моделей у фізиці, щоб спростити речі. Безмасові мотузки, точкові частинки, ідеальні гази і частинки в полі серед багатьох спрощених моделей, що використовуються у фізиці. Закони фізики представлені у вигляді простих рівнянь, таких як закони Ньютона, рівняння Максвелла і рівняння Шредінгера. Ці закони, є основою для створення математичних моделей реальних ситуацій. Більшість реальних ситуацій є дуже складними і, таким чином, моделюється приблизно на комп'ютері, моделі, які можна обчислити зроблені з основних законів або наближених моделей, зроблених з основних законів. Наприклад, молекули можуть бути змодельовані молекулярних орбіталей моделей, які наближені рішення рівняння Шредінгера.

Різні математичні моделі використовують різні геометричні описи, які не обов'язково точними описами геометрії Всесвіту. Евклідова геометрія часто використовується в класичній фізиці, в той час як спеціальна теорія відносності і загальна теорія відносності є прикладами теорій, які використовують в геометрії, що не є Евклідовою.

Література

  • Коротаев А. В., Малков А. С., Халтурина Д. А. Законы истории. Математическое моделирование исторических макропроцессов. Демография, экономика, войны. М.: УРСС, 2005 .
  • Енциклопедія кібернетики, т. 2, с. 42.
  • Мала гірнича енциклопедія : у 3 т. / за ред. В. С. Білецького. Д. : Донбас, 2007. — Т. 2 : Л  Р. — 670 с. — ISBN 57740-0828-2.
  • Білецький В. С., Смирнов В. О. Моделювання процесів збагачення корисних копалин: (Монографія) — Донецьк: Східний видавничий дім, 2013.- 304 с.

Див. також

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.