Нерівність Мінковського
Нері́вність Мінко́вського — це нерівність трикутника для векторного простору функцій з інтегрованим -им ступенем.
Формулювання
Нехай — метричний простір, і функції , тобто , де , і інтеграл розумієтся як інтеграл Лебега.
Тоді , а також:
- .
Зауваження
Нерівність Мінковського показує, що в лінійному просторі можна ввести норму:
- ,
яка перетворює його на нормований, а також і метричний простір.
Простір lp
Хай — скінченна міра на . Тоді множина всіх послідовностей , таких що
- ,
називается .
Нерівність Мінковського для цього простору має вигляд:
- .
Імовірнісний простір
Хай — імовірнісний простір. Тоді складається з випадкових величин з кінцевим -м моментом: , де символ позначає математичне сподівання.
Нерівність Мінковського в цьому випадку має вигляд:
Див. також
Джерела
- Беккенбах Э., Беллман Р. Неравенства. — Москва : Наука, 1965.(рос.)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.