Равлик Паскаля

Равлик Паскаляпласка алгебрична крива 4-го порядку; подера кола, конхоїда кола відносно точки на колі, частковий випадок декартового овалу, вона також є епітрохоїдою. Названа за ім'ям Етьєна Паскаля (батька Блеза Паскаля), який вперше розглянув її.

Три равлики Паскаля, конхоїди чорного кола: зелена , червона (кардіоїда) і синя
Анімація подери кола

Рівняння

Рівняння в прямокутних координатах:

в полярних координатах:

Тут a діаметр вихідного кола, а l — відстань, на яку зміщається точка вздовж радіус-вектора (див. конхоїда).

Параметричні рівняння

Звичайне:

Раціональне :

Властивості

  • Початок координат є
    • вузловою точкою при .
    • точкою повернення при (у цьому випадку равлик Паскаля називається кардіоїдою).
    • подвійною точкою, ізольованою при .
  • Довжина дуги виражається еліптичним інтегралом 2-го роду.
  • Площа, обмежена равликом Паскаля:
    ;
    при площа внутрішньої петлі при обчисленні за цією формулою враховується двічі.
  • У разі , равлик Паскаля також називається трисектрисою. Таку назву він отримав через те, що, якщо на площині задано трисектрису, то трисекцію кута можна побудувати за допомогою циркуля і лінійки.

Посилання

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.