Теорема Какутані про нерухому точку

Теорема Какутані про нерухому точку — твердження в опуклій геометрії, що є узагальненням теореми Брауера про нерухому точку. Терема має широке застосування в економіці, зокрема у знаменитому доведенні існування рівноваги Неша.

Твердження теореми

Необхідні означення

Багатозначною функцією φ із множини X у множину Y називається функція із X у булеан множини Y, φ: X  2Y, для якої також φ(x) є непорожньою множиною для всіх .

Багатозначна функція φ: X  2Y називається замкнутою якщо множина {(x,y) | y  φ(x)} є замкнутою підмножиною у X × Y. Іншими словами, якщо для послідовностей і для яких , і для всіх , також .

Багатозначна функція φ: X  Y називається напівнеперервною зверху в точці x, якщо для будь-якого околу U множини-образу φ(x) існує окіл V точки x, такий, що де . Функція називається напівнеперервною зверху, якщо вона є напівнеперервною зверху в кожній точці. Якщо множина X є компактною то багатозначна функція є замкнутою тоді і тільки тоді коли вона є напівнеперервною зверху і φ(x) є замкнутою множиною для всіх x.

Нехай φ: X  2X — багатозначна функція. Тоді a  X називається нерухомою точкою функції φ якщо a  φ(a).

ε-сіткою у метричному просторі X називається така підмножина S, що для кожної точки x у X існує точка у S відстань до якої є меншою за ε. Для компактного простору X завжди існує скінченна ε-сітка[1].

Твердження теореми

Нехай X непорожня, компактна і опукла підмножина евклідового простору Rn. Якщо φ: X  2X є замкнутою багатозначною функцією на X і для всіх x  X множина φ(x) є непорожньою і опуклою то для функції φ існує нерухома точка.

Доведення

Оскільки X — компактна множина, то для неї існує скінченна ε-сітка для будь-якого ε > 0. Виберемо і зафіксуємо довільну точку в кожній із множин . Задамо тепер неперервних на X функцій , що мають вигляд

Ці функції є невід'ємними і окрім того того, їх сума завжди є додатною оскільки з означення ε-сітки для будь-якого x маємо хоча б для одного i, так що для цього i маємо . Виходячи з цього, можна побудувати вагових функцій

Користуючись ваговими функціями визначимо однозначне неперервне відображення за допомогою формули

З умов і з опуклості множини X випливає, що . Таким чином, при будь-якому ε > 0 ми маємо однозначне неперервне відображення . По теоремі Брауера про нерухому точку у цього відображення є нерухома точка .

Побудуємо такі ж функції і точки для послідовності додатних чисел для якої Оскільки множина X є компактною відповідна послідовність нерухомих точок (для яких містить підпослідовність, що збігається до деякої границі . Тому можна вважати, що обрана послідовність додатних чисел задовольняє умовам

Тоді є нерухомою точкою відображення f. Для доведення цього розглянемо множину , де при . Якщо при будь-якому виявиться, що , то звідси буде випливати, що через замкнутість множини в X.

Множина є відкритою множиною, що містить множину оскільки вона є об'єднанням відкритих множин Також вона є опуклою оскільки вона є векторною сумою двох опуклих множин і

Відображення f є напівнеперервним зверху і тому з того, що — відкрита множина, що включає випливає, що існує ε-окіл Vε точки , для якого Зважаючи на властивості послідовності для досить великих маємо і . При цьому виконання нерівності означає, що

і

В результаті при всіх досить великих маємо для кожного i для якого Звідси випливає що

Тоді враховуючи що точка при досить великих є опуклою лінійною комбінацією тільки тих точок які належать і оскільки множина є опуклою, то Спрямовуючи до нескінченності отримуємо, що Звідси при будь-якому і з наведених вище аргументів,

Примітки

  1. Твердження про існування скінченної є еквівалентним стандартному означенню компактності для метричних просторів. Див., наприклад Дороговцев Я.В. Математичний аналіз: Підручник: У двох частинах. Частина 2. — К. : Либідь, 1994. — 304 с.

Див. також

Література

  • Х. Никайдо, Выпуклые структуры и математическая экономика. — Москва: Мир, 1972.
  • Border, Kim C. (1989). Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press. ISBN 9780521265645.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.