Дельта-кільце
У математиці непуста сім'я множин називається δ-кільцем якщо вона є замкнутою щодо операцій об'єднання, доповнення і зліченного перетину:
- якщо
- якщо
- якщо для всіх
Якщо виконуються лише перші дві умови, то є кільцем але не δ-кільцем. Тому можна дати означення, що δ-кільце є кільцем множин замкнутим щодо операції зліченного перетину.
Приклади
- Кожне σ-кільце (і зокрема σ-алгебра) є δ-кільцем. Це випливає із співвідношення для множин: Натомість, як показують приклади нижче, δ-кільце не обов'язково є σ-кільцем.
- Якщо X є нескінченною множиною, то сім'я всіх її скінченних підмножин є δ-кільцем але не σ-кільцем.
- де позначає міру Лебега є δ-кільцем. Це кільце не є σ-кільцем оскільки, наприклад, має нескінченну міру.
- Узагальнюючи попередній приклад, якщо (X, 𝒜, μ) є вимірним простором, то ті множини σ-алгебри 𝒜, міра яких є скінченною утворюють δ-кільце.
Застосування у теорії міри
δ-кільце можна використовувати замість σ-алгебр у розвитку теорії міри якщо не допускається нескінченна міра.
Наприклад, традиційно у теоремі Каратеодорі про продовження, яка поширює міра, задану на кільці множин, до міри на породженій ним σ-алгебр, конструкція приводить до міри, яка не є скінченною. Якщо початкова міра є сигма-скінченною, можна альтернативно розглянути розширення на δ-кільце, породжене 𝒜, а не на σ-алгебру. При цьому не використовуватиметься значення + ∞ у визначенні міри.
Якщо задано δ-кільце 𝒟 на множині X, то підмножина A називається локально вимірною відносно 𝒟 якщо:
Клас локально вимірних множин відносно 𝒟 утворює σ-алгебру. Якщо задана скінченна міра μ на 𝒟, її можна поширити на міру на σ-алгебрі локально вимірних множин взявши для всіх A із цієї σ-алгебри:
Див. також
Посилання
- Cortzen, Allan. "Delta-Ring." From MathWorld—A Wolfram Web Resource, created by Eric W. Weisstein. http://mathworld.wolfram.com/Delta-Ring.html
Література
- John L. Kelley, T. P. Srinivasan, Measure and Integral, Springer, 1987 ISBN 978-0-387-96633-5