Сфера Рімана

Сфера Рімана ріманова поверхня, природна структура на розширеній комплексній площині яка є комплексною проективною прямою Іншими словами це модель розширеної комплексної площини, де до звичайної комплексної площини додається точка на нескінченності. Відповідно до моделі Рімана, точка «∞» наближається до дуже великих чисел, так само як точка «0» є близькою до дуже малих чисел.

Сферу Рімана можна зобразити у вигляді площини комплексних чисел, яка обгорнута довкола сфери (як деяку форму стереографічної проекції детально описаної нижче).

Як дійсний многовид дифеоморфна двовимірній сфері

Координати

Числові координати на сфері Рімана вводяться трьома способами:

  • афінна комплексна координата z, яка приймає значення ;
  • проективні комплексні координати ;
  • тривимірні дійсні координати , пов'язані рівнянням:
.
Сфера Рімана стереографічної проекції переводиться на площину

Перехід від одних координат до інших задається формулами:

задає відображення сфери з виколотим полюсом на комплексну площину, яке називається стереографічною проекцією.

Перетворення Мебіуса

Автоморфізмами сфери Рімана є перетворення Мебіуса. Нехай  — матриця із . Її дія на сфері Рімана в термінах проективних комплексних координат — просто множення вектора-стовпця координат на матрицю. В афінних координатах дія виглядає так:

Додаток

Сфера Рімана відома в теоретичній фізиці.

В спеціальній теорії відносності сфера Рімана є моделлю небесної сфери. Перетворення Мебіуса пов'язані з перетвореннями Лоренца. Перетворення Мебіуса і Лоренца зв'язані також зі спінорами. В квантовій механіці сфера Рімана параметризує стани систем, описуваних 2-вимірним простором (див. q-біт), зокрема спіна масивних часток з спіном 1/2, таких як електрон. В цьому контексті сферу Рімана називають сферою Блоха і використовують на ній координати «широта-довгота» майже як на звичайній сфері, тільки широту відраховують від полюса і ділять кут на 2, т. ч. (див. мал.)

В такому випадку вірні співвідношення:

Примітки

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.